
PhD Dissertation

International Doctorate School in Information and

Communication Technologies

DIT - University of Trento

On the computational complexity of

enumerating certificates of NP problems

Marco Rospocher

Advisor:

Prof. Romeo Rizzi

Dipartimento di Matematica e Informatica (DIMI)

Università degli Studi di Udine

Member ICT Graduate School

Università degli Studi di Trento

March 2006

to Giuditta

Abstract

In this thesis we investigate the complexity of listing problems, where it is

required to generate all possible solutions for any given input instance. The

new contributions proposed are twofold. On one side, we propose a new

structural computational complexity theory for listing problems associated to

NP relations. Under a reasonable notion of efficiency for listing algorithms,

we provide several completeness results for the considered class of listing

problems. On the other side, we provide a general efficient method for list-

ing all (optimal) solutions of a combinatorial problem, whenever we have a

good knowledge of the polyhedral description of the underlying combinatorial

problem. To conclude, exploiting the underlying structure of the problem, we

provide very efficient algorithms for listing all satisfying truth assignments of

some peculiar classes of boolean formulas, like for example 2SAT formulas,

outperforming the state-of-the-art time bounds.

Keywords

listing, computational complexity, completeness, combinatorial optimization,

polyhedral description.

Acknowledgements

My first and foremost thanks goes to my advisor, Romeo Rizzi, for in-

troducing me to very challenging research topics, for his time, enthusiasm,

encouragement and particularly his inexhaustible supply of interesting prob-

lems. Without his valuable guidance in research, this thesis would never have

been written.

My sincere thanks goes to Pablo Moscato and all the members of the

Newcastle Bioinformatics Initiative group at the University of Newcastle,

NSW, Australia, for their support and hospitality during my three and a

half months stay “down under”.

A special thanks goes to my whole family, for their invaluable support

over all these academic years.

Last but not least, my most grateful thanks goes to my beloved half,

Giuditta, for having been so patient and supportive over the last three years,

specially during my stay abroad. This thesis is dedicated to her.

Contents

1 Introduction 1

1.1 Organization and contributions 5

2 Preliminaries 9

2.1 Sets, relations and functions 9

2.2 Graphs and Trees . 11

2.3 Boolean formulas and Boolean Circuits 13

2.4 Complexity Theory . 16

2.5 Polytopes, Polyhedra and Linear Programming 20

3 Structural results regarding a listing complexity theory 25

3.1 Listing Problems and class LP 25

3.2 Listing algorithms and their notions of efficiency 27

3.3 LP-complete listing problems 30

3.3.1 An LP-complete problem: LBounded Halting . . . 31

3.3.2 One-to-one certificates reductions: a powerful tool for

our LP-completeness theory 34

3.4 LP-completeness of some listing problems whose decision ver-

sion is in P . 38

3.4.1 LPrime Implicants is LP-complete 41

4 On listing solutions of a broad class of combinatorial opti-

mization problems 47

i

4.1 Introduction . 47

4.2 Case 1. The combinatorial optimization problem is polynomial

time solvable for any weight vector w ∈ RS 55

4.2.1 Correctness of Algorithm 4.1 58

4.2.2 Complexity of Algorithm 4.1 61

4.2.3 Example: Algorithm 4.1 lists all minimum spanning trees 62

4.3 Case 2. The combinatorial optimization problem is polynomial

time solvable for any weight vector w ∈ RS
≥0 64

4.4 Comparison with other state-of-the-art listing algorithms . . . 69

5 Listing satisfying truth assignments of XOR and 2SAT for-

mulas 71

5.1 Listing satisfying truth assignments of CNF-formulas with XOR-

clauses . 71

5.1.1 A polynomial space linear delay listing algorithm for

CNF-formulas with XOR-clauses 72

5.1.2 Ranking and unranking functions for CNF-formula with

XOR-clauses . 80

5.2 Listing satisfying truth assignments of 2SAT formulas 82

5.2.1 A polynomial space linear delay listing algorithm for

2SAT formulas . 83

5.2.2 A polynomial space linear delay listing algorithm for

free 2SAT formulas 87

6 Conclusions 93

Bibliography 97

A PC and P↑C are proper classes of polyhedra 105

ii

B A data structure for listing all satisfying truth assignments

of 2SAT formulas 107

iii

List of Algorithms

3.1 FindPI(ϕ) . 42

4.1 List(S,F , w) . 57

4.2 Enumerate(S,F , F̌ , S̃, w, opt) 58

4.3 List>0(S,F , w) . 66

4.4 Enumerate>0(S,F , F, S̃, w, opt, ǫ) 67

5.1 XOR-Listing(ϕ) . 79

5.2 Rank(C, X) . 81

5.3 Unrank(C, t) . 81

5.4 UnitProp(ϕ) . 85

5.5 Preprocessing(ϕ) . 86

5.6 ListFree2SAT(ϕ) . 88

5.7 Branch(ϕ, T, C) . 88

5.8 LiterProp(ϕ, x, T, C) . 89

5.9 UndoLiterProp(ϕ, x, T, C) 89

v

List of Figures

4.1 Minimum Weight Spanning Tree Example: a graph G and all

its spanning trees T1, T2, T3, T4. 63

4.2 Minimum Weight Spanning Tree Example: Recursion Tree . . 64

B.1 Our free 2SAT data structure for formula ϕ = (x1∨x2)∧(x1∨

x3) ∧ (x2 ∨ x3). 108

vii

Chapter 1

Introduction

Computational complexity is a lively and major branch of theoretical com-

puter science that analyzes and classifies problems in terms of the compu-

tational resources which are necessary and sufficient to solve them. Since

the introduction of the NP-completeness theory [7, 38, 43], computational

complexity has rapidly expanded and a remarkable list of celebrated achieve-

ments has been obtained.

Historically, computational problems have been considered from a deci-

sional perspective, in which problems have been identified with sets or lan-

guages. The goal in a decision problem is indeed to establish if a given input

instance (a string) belongs or not to a set (a language). Hence, the output

of the computation of a decision problem is just a yes or no answer. For

example, Sat is the problem of deciding whether a given boolean formula ϕ

admits a satisfying truth assignment.

Computational decision problems are classified into complexity classes ac-

cording to the amount of resources needed to solve them. Class P contains

decision problems solvable in polynomial time in the length of the input. Intu-

itively, P represents the class of efficiently solvable problems since algorithms

1

CHAPTER 1. INTRODUCTION

with running time which grows faster than polynomial (e.g. exponential) are

not considered to be practically usable. Unfortunately, for many well-known

problems like Sat, no polynomial time algorithm is known.

NP contains decision problems solvable in polynomial time by nondeter-

ministic algorithms. Equivalently, NP is characterized by certificates: a yes

instance of the problem admits a short certificate with which one can prove

the correctness of the answer in polynomial time. Note that Sat belongs to

NP: a certificate for yes answer of a given boolean formula ϕ is precisely a

satisfying truth assignment of ϕ, and its correctness can be trivially checked

in polynomial time. Clearly, P ⊆ NP, but it is still an open question whether

P ⊂ NP. NP contains NP-complete problems: if we solve in polynomial

time any of them then all problems in NP are solvable in polynomial time.

In particular, Sat is NP-complete [7].

Although, historically, much effort has been spent in studying the com-

putational complexity of decision problems, it is clear that in many compu-

tational tasks, just a yes or no answer is not enough. For example, given a

boolean formula, we may ask for a satisfying truth assignment (if one exist).

Hence, more generally, we assume to work with a binary relation which asso-

ciates instances to solutions, and we consider some computational problem

associated to this relation. For example, the decision problem associated to

a binary relation asks to decide if, for a given instance, the set of solutions

corresponding to that instance is empty or not. Of particular interest are the

so called NP relations, where the size of a solution is polynomially bounded

by the size of the instance, and the correctness of the solution is verifiable

in polynomial time. As suggested by the name, there is a strong connection

between languages in NP and NP relations: a language L is in NP if and

only if there exists an NP relation R, such that the set of instances of R

2

which admit at least a solution, is the language L itself. As noted in [5],

to any language in NP corresponds a single decision problem and many NP

relations.

In 1979, Valiant [54] proposed a computational complexity theory for

counting problems associated to NP relations. In a counting problem, the

goal is to calculate the cardinality of the set of solutions for any given in-

stance. Hence, in view of the above considerations, Valiant investigated the

complexity of counting, with respect to a specific NP relation, the certificates

of any instance of a language in NP. For example, in #Sat the goal is to

find the number of satisfying truth assignments of a given boolean formula.

Valiant introduced class #P, the class of counting problems associated to

NP relations, and the class of #P-complete problems (#PC), which is the

class of those counting problems in #P such that solving in polynomial time

any of them implies that all problems in #P are solvable in polynomial time.

Recalling our example, #Sat is #P-complete [55]. Indeed, Valiant [54, 55]

has also shown that there exist some NP relations such that the associated

counting problem is #P-complete, while the associated decision problem is in

P: for example, the problem of counting the number of perfect matchings in a

bipartite graph G is #P-complete (as a consequence of the #P-completeness

of Permanent, the problem of computing the permanent of a matrix),

while deciding if a bipartite graph G has a perfect matching is in P.

In this thesis, we investigate the complexity of listing problems, that is

those problems where the goal is to produce in output the set of all solutions

for any given instance. Inspired by the approach proposed by Valiant [54], we

propose a complexity theory for listing problems associated to NP relations.

Hence, we investigate the complexity of listing, with respect to a specific NP

relation, the certificates of any instance of a language in NP.

3

CHAPTER 1. INTRODUCTION

Although many positive results have been offered (where most of them

concerns developing a fast ad-hoc algorithm for listing the solutions of a

specific problem), only few and isolated negative results have been proposed,

and, up to now, no structural computational complexity theory has been

developed for the gender of problems here considered. Nonetheless, there are

strong motivations in our opinion to study the computational complexity of

listing problems:

1. due to the enduring growth of computing power and storing capacity,

the task of listing all the solutions of a problem is nowadays feasible for

reasonable size instances;

2. there are many fields in which it is required to efficiently list the so-

lutions of a given problem: among them, computational biology (e.g.

listing perfect phylogenies of species [36]), combinatorial optimization

(e.g. listing perfect matchings of a graph [26, 27, 52]) and computational

geometry (e.g. listing vertices of a polytope [6]);

3. listing all solutions of a problem can help when searching for a counter-

example to some conjecture;

4. studying and classifying the difficulty of a listing problem may help to

better understand the structure underlying it;

5. correlations and intersections of a complexity theory for listing problems

with those already proposed for decision problems and other genders of

problems may lead to new insights toward the main open questions in

computational complexity, like the mighty P ⊂ NP conjecture.

6. understanding the space of solutions of a problem can help to design

4

1.1. ORGANIZATION AND CONTRIBUTIONS

fast ad-hoc heuristics for it.

1.1 Organization and contributions

The chapters of this thesis are organized as follows. Chapter 2, contains some

definitions and results used through out of the thesis. Chapters 3 through 5

contain a detailed description of the new contributions proposed, while in

Chapters 6 we draw some conclusions. Summarizing, the main contributions

proposed in this thesis are the following.

Chapter 3

In this chapter of the thesis, we introduce a new complexity class, called

LP. This class is the listing analogue of class #P for counting problems: it

contains the listing problems associated to NP relations. We define some

subclasses of LP accordingly to the various notions of efficient listing pro-

posed in literature. In this chapter, we mainly consider the weakest of them

(polynomial total time), in order to obtain stronger results. We show that

LP contains LP-complete problems, that is listing problems such that if we

efficiently solve one of them, then all listing problems in LP can be efficiently

solved. One of them, is LSat. We show that many listing problems turn out

to be LP-complete thanks to the notion of one-to-one certificates reduction

for NP relations: actually, many of the listing problems associated to NP

relations such that the associated decision problem is NP-complete, turn out

to be LP-complete due to one-to-one certificates reductions. We conclude

the chapter proving that the LP-completeness of the listing problem associ-

ated to an NP relation does not imply the NP-completeness of the decision

5

CHAPTER 1. INTRODUCTION

problem associated to the relation: we show that,

• the problem of listing all truth assignments of a 1Valid boolean formula;

• the problem of listing all prime implicants of a monotone boolean for-

mula;

are all LP-complete.

Chapter 4

Differently from the negative results presented in Chapter 3, in this chapter

and the next one we mainly provide positive results.

In this chapter, we consider the listing problem associated to combinatorial

ensembles. A combinatorial ensemble is a family of couples 〈S,F〉, where S

is a set of element (called the ground set) and F , given implicity, is a family

of subsets of S (called feasible solutions). Strengthening a result proposed

in [6], we show that every time we have a good knowledge of the polyhedral

description of the combinatorial ensemble, then we can efficiently list all

feasible solutions for any given instance. Actually, this result follows as a

consequence of a more general one, where feasible solutions are additionally

evaluated by an objective function. In particular, to each element of the

ground set is assigned a real value weight, the value of a feasible solution is

the sum of the weights of the elements in it, and we consider the problem

of listing all optimal feasible solutions of the combinatorial ensemble. In

particular, we show that every time we can compute in polynomial time a

minimum value feasible solution for arbitrary real value weights, condition

which is equivalent to have a good knowledge of the polyhedral description

6

1.1. ORGANIZATION AND CONTRIBUTIONS

of the combinatorial ensemble, then we can list in polynomial space and

polynomial delay all:

• the feasible solutions;

• the minimum/maximum cardinality feasible solutions;

• the minimum/maximum value feasible solutions;

• the minimum/maximum value minimum/maximum cardinality feasible

solutions.

This result implies that we can efficiently list all (optimal) solutions of a

broad class of combinatorial optimization problems: examples are the per-

fect matching problem, the spanning tree problem, and the T -join problem.

The same results cannot be achieved if we made the assumption that we

can compute in polynomial time a minimum value feasible solution just for

arbitrary nonnegative value weights. In particular, we provide an example

of a combinatorial optimization problem for which it is LP-hard to list all

minimum value feasible solutions for nonnegative value weights. However, if

we restrict to strictly positive weights, then we show that it is possible to list

in polynomial space and polynomial delay all:

• the minimum cardinality feasible solutions;

• the minimum value feasible solutions;

• the minimum value minimum cardinality feasible solutions.

The value of the above results is that from a single framework we can

derive many positive results, whereas up to now many of these results had

been worked out one by one.

7

CHAPTER 1. INTRODUCTION

Chapter 5

In this chapter, we consider the problem of listing all satisfying truth as-

signments for two particular classes of boolean formulas: CNF formulas with

XOR clauses and 2SAT formulas. In [10], Creignou and Hébrard proposed

a polynomial space polynomial delay algorithm for solving the listing prob-

lem in the two cases above. Their algorithm, based on a general fact due to

Valiant [55], runs with a delay which is not linear in the size of the instance.

Exploiting the underlying structure of the problem, we present in both cases

a polynomial space linear delay listing algorithm.

8

Chapter 2

Preliminaries

In this chapter we introduce some basic notions and we recall some results

that we will use later. This chapter has by no means the ambition of being

exhaustive or detailed: references to comprehensive sources will be provided

in each section.

2.1 Sets, relations and functions

See also [41, 49, 9].

A set of element is finite if it contains a finite number of elements, other-

wise it is infinite. For example, the set A = {a, b, c} is finite, while the set

of odd natural numbers is infinite.

The cardinality or size of a finite set A, denoted by |A|, is the number of

elements of A. The size of the empty set is 0.

The power set of a set A, denoted by 2A, is the set of all possible subsets

of A, including the empty set and A itself. If set A is finite, than 2A contains

2|A| elements.

9

CHAPTER 2. PRELIMINARIES

Two special sets of great interest to us are N and R. We denote by

N the set of natural numbers and R the set of real numbers. Moreover,

R≥0 := {x : x ∈ R, x ≥ 0} and R>0 := {x : x ∈ R, x > 0}.

Given two elements a and b, let us denote by (a, b) the ordered pair of a

and b. Note that (a, b) is different from (b, a) and it is distinct from {a, b}.

The Cartesian product of two sets A and B, denoted by A×B, is the set of

all ordered pairs (a, b) with a ∈ A and b ∈ B.

A binary relation R between two sets A and B is a subset of the Cartesian

product A × B. To every binary relation R we can associate a predicate

R(a, b) such that R(a, b) is true (resp. R(a, b) = 1) if and only if (a, b) ∈ R,

otherwise R(a, b) is false (resp. R(a, b) = 0).

We define the domain (resp. codomain) of a binary relation R between A

and B as the set of all a ∈ A (resp. b ∈ B) such that R(a, b) = 1 for some

b ∈ B (resp. a ∈ A).

The concept of ordered pair can be extended to a sequence of n elements,

called n-tuple, denoted by (a1, a2, . . . , an). The Cartesian product of n sets

A1, A2, . . . , An is the set of n-tuples

A1 × A2 × · · · × An = {(a1, a2, . . . , an) : ai ∈ Ai, i = 1, . . . , n}.

Given two sets A and B, with B finite, we denote by A|B|, or simply AB, the

cartesian product of |B| sets each one equal to |A|. We call the elements of

AB vectors and, given a vector a ∈ AB, we denote by ab the b-th entry in

the |B|-tuple a.

An n-ary relation on sets A1, A2, . . . , An is a subset of A1 × A2 × · · · × An.

A function from a set A to a set B (denoted by f : A → B) is a binary

relation between A and B such that there exists at most one ordered pair

(a, b) for any member a of A. If (a, b) ∈ f , we usually write f(a) = b, where

10

2.2. GRAPHS AND TREES

a is called the argument of f , while b is called the value of f .

A function f : A→ B may be:

1. injective (or one-to-one), if for every a, a′ ∈ A with a 6= a′, then f(a) 6=

f(a′);

2. surjective (or onto), if for each b ∈ B exists a ∈ A such that f(a) = b;

3. bijective (or one-to-one and onto), if f is both injective and surjective.

2.2 Graphs and Trees

See also [49, 9, 8].

A directed graph (or digraph) G is a pair (V, A), where V = V (G) is a

finite set and A = A(G) is a binary relation on V , that is, A is a subset of

V × V . The set V is called the node set of G, and its elements are called

nodes (or vertices). The set A is called the arc set of G, and its elements

are called arcs. Given an arc (u, v), or simply uv, we have that u is the tail

node of uv and v is the head node of uv. The in-degree (resp. out-degree) of

a node u is the number of arcs with u as head node (resp. tail node).

In an undirected graph G = (V, E), the edge set E consists of unordered

pairs of nodes, rather than ordered pairs as in directed graphs. That is, an

edge is a set {u, v}, where u, v ∈ V and u 6= v. By convention, we use the

notation uv for an edge, rather than the set notation {u, v}, and uv and vu

are considered to be the same edge. Furthermore, u and v are called the end-

points of edge uv. Many of the following definitions hold both for directed

11

CHAPTER 2. PRELIMINARIES

and undirected graphs, so we state them just for undirected graphs.

A weighted graph is an undirected graph for which each edge e ∈ E

has an associated weight w(e) (or, we), typically given by a weight func-

tion w : E → R.

We say that an undirected graph G′ = (V ′, E ′) is a subgraph of G = (V, E)

if V ′ ⊆ V and E ′ ⊆ E. Given a set V ′ ⊆ V , the subgraph of G induced by

V ′ is the undirected graph G′ = (V ′, E ′), where E ′ = {uv ∈ E : u, v ∈ V ′}.

A subgraph G′ of G is spanning if V ′ = V .

A bipartite graph is an undirected graph G = (V, E) in which V can be

partitioned into two sets V1 and V2 such that uv ∈ E implies either u ∈ V1

and v ∈ V2 or u ∈ V2 and v ∈ V1. That is, all edges go between the two sets

V1 and V2.

Let G = (V, E) be an undirected graph. For any U ⊆ V , we define

δ(U) ⊆ E as the set of the edges with one endpoint in U and the other in

V \ U . A cut is a subset F ⊆ E, such that F = δ(U) for some U ⊆ V .

A matching in an undirected graph G = (V, E) is a subset M of edges such

that no node of G is the endpoint of more than one edge in M .

A walk from u to v in an undirected graph G = (V, E) is a sequence

u = v0, e1, v1, . . . , ek, vk = v with k ≥ 1, where vi is a node and ei is the

edge vi−1vi. A walk with v0, v1, . . . , vk pairwise distinct is called a path. A

walk with v0 = vk and v1, v2, . . . , vk−1 pairwise distinct is called a cycle. An

undirected graph G = (V, E) is connected if there exists a path between each

couple of nodes of G. A graph G = (V, E) is acyclic if there are no cycles in

G.

12

2.3. BOOLEAN FORMULAS AND BOOLEAN CIRCUITS

A tree T = (V, E) is a connected acyclic undirected graph. Given a graph

G = (V, E), a spanning tree of G is a subgraph of G which is a tree and it is

spanning.

2.3 Boolean formulas and Boolean Circuits

See also [49, 46].

A boolean variable x is a variable which can take only two possible values,

called boolean values : 1 (true) or 0 (false).

The negation (or, NOT) of a boolean value is the other boolean value and it

is usually indicated by ·̄. Hence, 1̄ = 0 and 0̄ = 1.

The conjunction (or, AND) of two boolean values is equal to 1 only if both

boolean values are equal to 1 and it is usually indicated by ∧. Hence, x∧y = 1

only if x = y = 1.

The disjunction (or, OR) of two boolean values is equal to 1 if either or

both boolean values are equal to 1 and it is usually indicated by ∨. Hence,

x ∨ y = 1 if x = 1 or y = 1.

A boolean formula can be any one of the following:

1. a boolean value;

2. a boolean variable;

3. the negation of a boolean formula;

4. the conjunction of two boolean formulas;

13

CHAPTER 2. PRELIMINARIES

5. the disjunction of two boolean formulas.

Given a boolean variable x, a literal is a boolean formula x (positive literal)

or x̄ (negative literal).

We define a truth assignment (or, 0/1-assignment) T as a mapping which

assigns to each variable a value in {0, 1}. If no ambiguity arises, sometimes

we denote T by a 0/1-vector. The evaluation of a boolean formula ϕ un-

der a truth assignment T is a process in which each variable instance in the

expression is replaced by the boolean value assigned by T , after which the

formula is simplified to 1 or 0 applying the above operators’ definitions. A

truth assignment T satisfies (resp. does not satisfy) a boolean formula ϕ,

if ϕ evaluates to 1 (resp. 0) under T . If T satisfies ϕ, we write T |= ϕ,

otherwise T 6|= ϕ. A boolean formula ϕ is satisfiable if there exists at least

one truth assignment T such that T |= ϕ.

A boolean formula ϕ is in conjunctive normal form (or, is a CNF-formula)

if ϕ =
∧

j=1,...,m cj := c1 ∧ c2 ∧ . . . ∧ cm, where m ≥ 1, and each of the cj,

called clause, is either a literal or a disjunction of two or more literals.

In Chapter 5 we will use a further boolean operator, called exclusive dis-

junction (or, XOR), such that the exclusive disjunction of two boolean values

is equal to 1 if exactly one of the two boolean values is equal to 1, and it is

usually indicated by ⊕. Hence, x⊕ y = 1 if x = 1 and y = 0, or x = 0 and

y = 1.

A boolean circuit is a directed acyclic graph C = (V, A) such that to

each node of C, also called gate, is assigned one of the following labels:

∧,∨, ·̄, x1, x2, . . . , xm, 0, 1, output. For each label x1, x2, . . . , xm, output there

14

2.3. BOOLEAN FORMULAS AND BOOLEAN CIRCUITS

is exactly one node in C. All nodes have out-degree at least 1, except the

node labeled output, which has out-degree 0 and in-degree 1. The nodes

labeled x1, x2, . . . , xm have in-degree 0 and are called inputs of the circuit.

The nodes labeled ·̄ have in-degree 1 while the nodes labeled 0 or 1 have

in-degree 0. To conclude, the nodes labeled ∧,∨ have in-degree 2.

Let T ∈ {0, 1}m be an assignment to the circuit’s inputs. Given a gate v,

we define recursively the truth value T (v) of gate v as follows:

1. if gate v is labeled 1 (resp. 0), then T (v) = 1 (resp. T (v) = 0);

2. if gate v is labeled xi, then T (v) = T (xi);

3. if gate v is labeled ·̄, then T (v) = T (w), where wv is the only arc in C

with v as head node;

4. if gate v is labeled ∧, then T (v) = T (u) ∧ T (w), where wv, uv are the

only two arcs in C with v as head node;

5. if gate v is labeled ∨, then T (v) = T (u) ∨ T (w), where wv, uv are the

only two arcs in C with v as head node;

6. if gate v is labeled output, then T (v) = T (w), where wv is the only arc

in C with v as head node.

Given an assignment T ∈ {0, 1}m, we define the circuit’s output C(T) as the

truth value of the gate labelled output. Hence, C(T) ∈ {0, 1}.

15

CHAPTER 2. PRELIMINARIES

2.4 Complexity Theory

In this section we assume the reader to be familiar with the notions of algo-

rithm, Turing Machine, polynomial-time and the big O notation. See also

[46, 5, 29] for a detailed explanation of these notions and the others reported

in this section.

An alphabet Σ is a finite set of elements, called symbols. A word, or string

of symbols, is an ordered finite sequence of symbols in Σ. We indicate with

Σ∗ the set of all finite words over Σ. Given a word x, we indicate with |x|

the length, or size, of x, i.e. the number of symbols occurring in x. A lan-

guage over Σ is a subset of Σ∗. In this thesis we assume that Σ is the binary

alphabet, that is, Σ = {0, 1}.

An abstract problem P is a binary relation between a set I of problem

instances and a set S of problem solutions. An example of abstract problem

is the one of finding an Hamiltonian Cycle C in a graph G. An instance for

this problem is the graph G, while a solution is a cycle in G which traverses

each node exactly once, or an empty set if no such cycle exists.

An encoding of a set O of objects is a mapping e from O to the set of

binary strings. Any “finite” mathematical object can be encoded by a bi-

nary string. For example, natural numbers can be easily encoded by binary

strings, or a graph can be represented by its adjacency matrix, which in turn

can be encoded by a binary string.

Encodings are used to map abstract problems to problems which can be

solved by a computer. A computer algorithm that solves some abstract

problem takes an encoding of a problem instance in input and produces an

16

2.4. COMPLEXITY THEORY

encoding of a problem solution in output. We call a problem whose instances

set and solutions set are sets of binary strings a computational problem, and

we say that a computational problem is polynomial-time solvable if there ex-

ists an algorithm to solve it in time O(nk), where n is the length of the input

string and k is a constant.

The extension of the notion of polynomial-time solvability from compu-

tational problems to abstract problems depends on the particular encoding

chosen. In fact, different encodings of the same object can have different size

(think for example to the different encodings of an integer number in unary

or binary). However, if we rule out some exceptions and we assume to work

with concise and reasonable encodings, all natural encodings have polynomial

related size: this implies that if an abstract problem P is polynomial-time

solvable with respect to an encoding e, then P is polynomial-time solvable

with respect to any other concise and reasonable encoding.

In a decision problem it is given an input x ∈ Σ∗ and it is required to verify

whether the input satisfies a certain property. Hence, the output required in

a decision problem is just a yes or no answer. If, given x, the answer returned

is yes (resp. no), then we say that x is a yes-instance (resp. no-instance).

Clearly, every decision problem can be thought as a language L over Σ, the

one containing all and only the yes-instances of the decision problem. Hence,

the terms decision problem and language is used interchangeably in this the-

sis as in the literature.

We indicate with P the class of decision problems which can be solved in

polynomial-time by a deterministic Turing Machine. We indicate with NP

the class of decision problems which can be solved in polynomial-time by a

non-deterministic Turing Machine. By definition, P ⊆ NP.

17

CHAPTER 2. PRELIMINARIES

There is an equivalent way to define class NP which turns out to be very

useful in the context of this thesis. Given a binary relation R, we define the

language L(R) associated to R as L(R) := {x : (x, y) ∈ R for some y}. A

binary relation R ⊆ Σ∗ × Σ∗ is said to be polynomially balanced if, for any

(x, y) ∈ R, the length of y is bounded by a polynomial in the length of x,

that is, |y| ≤ |x|k. A binary relation R ⊆ Σ∗×Σ∗ is said to be polynomially

decidable if there exists a polynomial time algorithm that, given x, y ∈ Σ∗,

decides whether (x, y) ∈ R. The following proposition holds.

Proposition 2.1. A language L ∈ NP if and only if there is a polynomially

balanced polynomially decidable relation R, such that L = L(R).

Given a string x, the strings y such that (x, y) ∈ R are called succinct

certificates (or polynomial witnesses). They attest that, with respect to re-

lation R, string x is a word of language L(R).

Let A and B be two decision problems. A polynomial time Karp reduc-

tion, or simply reduction, from A to B is a polynomial time computable

function f such that x ∈ A if and only if f(x) ∈ B. If there exists a polyno-

mial time reduction from A to B, we say that A reduces to B, and we write

A ≤ B. Clearly, if A ≤ B and B is in P, it follows that A ∈ P. Conversely,

if A ≤ B and A is not in P, it follows that B /∈ P. Furthermore, if A ≤ B

and B ≤ C, then A ≤ C.

A decision problem A is NP-hard if for every problem B ∈ NP we have

B ≤ A. A decision problem A is NP-complete if it is NP-hard and it belongs

to NP. Hence, if an NP-complete problem A is polynomially solvable, then

all decision problems in NP are polynomially solvable.

18

2.4. COMPLEXITY THEORY

Let R ⊆ Σ∗ × Σ∗ be a binary relation. Given a string x ∈ Σ∗, we define

Y (x) := {y : (x, y) ∈ R}. We define the following problems associated to

a relation R:

• Decision Problem: given a string x, decide whether Y (x) 6= ∅.

• Search Problem: given a string x, output a string y ∈ Y (x) (if any).

• Counting Problem: given a string x, output |Y (x)|.

• Listing Problem: given a string x, output all strings in Y (x) (if any).

Note that, if R is a polynomially balanced polynomially decidable rela-

tion, for any string x, Y (x) is the set of succinct certificates attesting that,

with respect to relation R, x belongs to the NP language L(R). Hence, the

class of decision problems associated to polynomially balanced polynomially

decidable relations is exactly NP.

The class of search problems (also know as function problems) associated

to polynomially balanced polynomially decidable relations is FNP. The class

of counting problems associated to polynomially balanced polynomially de-

cidable relations is #P [55, 54].

Given two polynomially balanced polynomially decidable relations R1 and

R2, a Levin reduction from R1 to R2 is a triplet of polynomial time com-

putable functions 〈f, g, h〉 such that:

• ∀x ∈ Σ∗, x ∈ L(R1)⇐⇒ f(x) ∈ L(R2);

19

CHAPTER 2. PRELIMINARIES

• ∀x, y ∈ Σ∗, (x, y) ∈ R1 =⇒ (f(x), g(x, y)) ∈ R2;

• ∀x, z ∈ Σ∗, (f(x), z) ∈ R2 =⇒ (x, h(x, z)) ∈ R2.

Note that a Levin reduction from R1 to R2 implies a Karp reduction from

L(R1) to L(R2). Actually, as observed in [1], all known Karp reductions for

proving NP-completeness of decision problems are, or can easily modified

to be, Levin reductions between some natural NP relations defining those

decision problems.

2.5 Polytopes, Polyhedra and Linear Programming

See also [49, 48, 8, 33].

Let x1, . . . , xm ∈ Rn, and let λ1, . . . , λm ∈ R≥0. We say that y :=

λ1x1 + · · ·+ λmxm is a nonnegative combination of vectors x1, . . . , xm. Fur-

thermore, if λ1 + · · · + λm = 1, we say that y is a convex combination of

x1, . . . , xm.

A subset C of Rn is called a cone if C 6= ∅ and for each x, y ∈ C, every

nonnegative combination of x, y belongs to C. The cone generated by a set

X of vectors is the smallest cone containing X, and it is denoted by cone(X).

Given a set S ⊆ Rn, the convex hull of S, denoted by conv.hull(S), is

the set of all convex combinations of elements of S. An important result

concerning the convex hull of a finite set of elements is that, for any finite

S ⊆ Rn and any c ∈ Rn, we have:

min{cx : x ∈ S} = min{cx : x ∈ conv.hull(S)}.

20

2.5. POLYTOPES, POLYHEDRA AND LINEAR PROGRAMMING

A polyhedron P is the set of solutions of a finite system of linear inequal-

ities, that is, given a matrix A ∈ Rn×m and a vector b ∈ Rn, the polyhedron

determined by A and b is the set P = {x ∈ Rm : Ax ≤ b}. If A ∈ Qn×m and

b ∈ Qn, then P = {x ∈ Rm : Ax ≤ b} is said to be a rational polyhedron.

In this thesis, we consider only rational polyhedra.

Given w ∈ Rm and t ∈ R, the inequality wx ≤ t is valid for a polyhedron

P if P ⊆ {x ∈ Rm : wx ≤ t}. A polyhedron P is bounded if there exists

w ∈ R≥0 such that P ⊆ {x ∈ Rm : −w ≤ xi ≤ w for i = 1, . . . , m}. A

bounded polyhedron is called a polytope. Motzkin [44] showed that a set P

is a polyhedron if and only if P = Q + C for some polytope Q and some

cone C. In P 6= ∅, then C is unique and is called the characteristic cone

char.cone(P) of P .

Given c ∈ Rm and d ∈ R, the hyperplane determined by c and d is the

set H = {x ∈ Rm : cx = d}. Given a polyhedron P = {x ∈ Rm : Ax ≤ b}

and an hyperplane H = {x ∈ Rm : cx = d}, we say that H is a supporting

hyperplane of P if cx ≤ d is a valid inequalities for P and P ∩ H 6= ∅. A

subset F of P is called a face of P if either F = P or F = P ∩H for some

supporting hyperplane H of P .

Given a polyhedron P = {x ∈ Rm : Ax ≤ b}, a vector x ∈ P is called a

vertex of P if {x} is a face of P , or equivalently if x cannot be written as a

convex combination of vectors in P . We call P pointed if it has at least one

vertex. In a pointed polyhedron every (inclusionwise) minimal face of P is a

vertex. Nonempty polytopes are pointed. Indeed, a polytope is equal to the

convex hull of its vertices. Actually, a set P is a polytope if and only if there

21

CHAPTER 2. PRELIMINARIES

exists a set S such that P is equal to conv.hull(S).

A set S in Rn is called up-monotone if for each y ∈ S all vectors x ∈ Rn

with x ≥ y are in S. The dominant S↑ of S is the smallest up-monotone

convex set containing S. Note that,

S↑ = conv.hull(S) + Rn
≥0 := {x + y : x ∈ conv.hull(S), y ∈ Rn

≥0}.

Furthermore, if P is a nonempty polytope, then P ↑ is an unbounded poly-

hedron.

Let P ⊆ Rn be a rational polyhedron. The facet complexity of P is the

smallest number f such that f ≥ n and there exists a system Ax ≤ b of

linear inequalities defining P where each inequality has size1 at most f . The

vertex complexity of P is the smallest number v such that v ≥ n and there

exist rational vectors x1, . . . , xk, y1, . . . , yh, with

P = conv.hull(x1, . . . , xk) + cone(y1, . . . , yh)

where each of x1, . . . , xk, y1, . . . , yh has size at most v. The following result

shows that vertex and facet complexity of a polyhedron are polynomially

related.

Theorem 2.2 ([48], page 121 - Theorem 10.2). Let P ⊆ Rn be a rational

polyhedron with facet complexity f and vertex complexity v. Then v ≤ 4n2f

and f ≤ 4n2v.

A Linear Programming problem, or LP problem, is the problem of opti-

mizing (i.e. maximizing or minimizing) a linear function over a polyhedron

P = {x : Ax ≤ b}, like, for example, max{cx : Ax ≤ b} or min{cx : Ax ≤

1Here, the size of a rational linear inequality or of a vector is its encoding length.

22

2.5. POLYTOPES, POLYHEDRA AND LINEAR PROGRAMMING

b}. The polyhedron P is called the feasible region and a vector x ∈ P is called

a feasible solution. If P is not empty, the LP problem is called feasible, and

infeasible otherwise. If x is a feasible solution such that cx is optimal, we

say that x is an optimal solution. A feasible LP problem is called bounded

if it has optimal solutions, and unbounded otherwise.

In [12], Dantzig presented a method for solving LP problems called the

simplex method. Although the simplex method turns out to work very well

in practice, no worst case polynomial running time bound has ever been

proved. The first polynomial time method for solving LP problems was

given by Khachiyan [39] in 1979. However, this method, also known as the

ellipsoid method, turns out to be practically infeasible. Karmarkar [37], in

1984, introduced the interior point method. This method solves LP prob-

lems in polynomial time and have very efficient implementations.

We conclude this section recalling an important result in polyhedral com-

binatorics which relates the polynomial time solvability of two problems on

polyhedra. We consider the following two problems on polyhedra.

Problem. Optimization

Input: a rational polyhedron P ⊆ Rn and a rational vector w ∈ Rn.

Goal: either (i) find y ∈ P such that wy ≤ wx for each x ∈ P , or

(ii) find a vector y in char.cone(P) with cy ≤ 0, or (iii) conclude that

P = ∅.

23

CHAPTER 2. PRELIMINARIES

Problem. Separation

Input: a rational polyhedron P ⊆ Rn and a rational vector v ∈ Rn.

Question: either conclude that v ∈ P , or, if not, find a rational

vector w ∈ Rn such that wx < wv for all x ∈ P .

A class of polyhedra P = {Pt : t ∈ O}, where O is a collection of objects

and Pt is a rational polyhedra for each t ∈ O, is called proper if for each

object t ∈ O we can compute in polynomial time in the size of t two natural

numbers nt and st such that Pt ⊆ Rnt and Pt has facet complexity at most st.

We say that problem Separation is polynomially solvable over class P if,

for any Pt ∈ P and any rational vector in v ∈ Rnt, there exists a polynomial

time (in the size of t and v) algorithm for solving problem Separation.

Analogously, we say that problem Optimization is polynomially solvable

over class P if there exists a polynomial time algorithm for solving problem

Optimization for any instance 〈Pt, w〉, where t ∈ O and w is a rational

vector in Rnt. Grötschel, Lovasz and Schrijver [33] proved the following

equivalence.

Theorem 2.3 (Grötschel, Lovasz and Schrijver [33]). For any proper class

of polyhedra, problem Optimization is solvable in polynomial time if and

only if problem Separation is solvable in polynomial time.

24

Chapter 3

Structural results regarding a listing

complexity theory

In this chapter of the thesis, we put the basis for developing a computational

complexity theory for listing problems. Informally, given an input instance

x and a property P , a listing problem asks to output all solutions y associ-

ated to input x that satisfy property P . We introduce complexity class LP

containing the listing problems associated to polynomially balanced poly-

nomially decidable binary relations, together with some relevant subclasses.

Note that LP is the listing analogous of class #P for counting problems. We

show that LP contains complete problems, that is, problems that if we can

efficiently list their solutions for any given instance, then we can efficiently

solve any listing problem in LP. In particular, we conclude the chapter

showing that some members of LP are complete, although their decision and

search versions are polynomially solvable.

3.1 Listing Problems and class LP

Without loss of generality, we assume that Σ is the binary alphabet. We

next recall the definition of listing problem associated to a binary relation.

25

CHAPTER 3. STRUCTURAL RESULTS REGARDING A LISTING

COMPLEXITY THEORY

Definition 3.1 (Listing Problem). Let R ⊆ Σ∗ × Σ∗ be a binary relation

on strings. Given any string x ∈ Σ∗, the listing problem associated with

relation R asks to return the set {y : (x, y) ∈ R}.

Usually, x is called input instance of the problem, while every element of

{y : (x, y) ∈ R} is called a solution. Among all listing problems associated

with binary relations, we focus our attention on studying listing problems as-

sociated to NP relations , that is, relations R that are polynomially balanced

(i.e. (x, y) ∈ R implies |y| ≤ |x|k for some constant k), and polynomially

decidable (i.e. there exists a polynomial time algorithm deciding whether

(x, y) ∈ R or not). An example of NP relation is the Hamiltonian Cycle

relation RHC defined as follows (we recall that an Hamiltonian cycle in a

graph is a cycle which traverses all nodes in the graph exactly once):

RHC := {(G, C) : G is a graph, C is an Hamiltonian cycle in G} .

We recall that NP relations are strictly related to NP languages: a lan-

guage L ∈ NP if and only if there is a polynomially balanced polynomially

decidable relation R, such that

L = L(R) := {x : (x, y) ∈ R for some y} .

For example, the relation Hamiltonian Cycle RHC is associated to language

Hamiltonian Cycle, a well-know member of NP. However, it is impor-

tant to note that for any particular NP language L, there are many NP

relations R such that L = L(R) (see [3]).

In this chapter of the thesis we are interested in studying the computa-

tional complexity of listing, with respect to a specified NP relation R, the suc-

cinct certificates y attesting that string x belongs to a language L(R) ∈ NP.

26

3.2. LISTING ALGORITHMS AND THEIR NOTIONS OF EFFICIENCY

For example, when we list all Hamiltonian cycles of a given graph G, we are

listing, with respect to relation RHC , all certificates attesting that G is a

member of the family of Hamiltonian graphs.

Definition 3.2 (Class LP). We define LP as the class of listing problems

associated with polynomially balanced polynomially decidable relations.

Notice that LP is the listing analogue of class #P for counting problems.

3.2 Listing algorithms and their notions of efficiency

A listing algorithm for solving the listing problem associated to a relation R

is an algorithm that, for any x, returns all y such that (x, y) ∈ R without

duplicates. In order to define a notion of efficiency (polynomial time) for

listing algorithms some caution has to be taken. Let us consider the following

relation:

RSAT :=

{

(ϕ, T) :
ϕ is a boolean CNF-formula,

T is a truth assignment satisfying ϕ

}

.

Clearly, RSAT is an NP relation: the length of T is indeed polynomial in

the number of variables (i.e., RSAT is polynomially balanced) and we can

easily check if T |= ϕ in polynomial time in the input size (i.e., RSAT is

polynomially decidable). Consider the listing problem associated to relation

RSAT .

Problem. LSat

Input: a boolean CNF-formula ϕ of n variables.

Output: all truth assignments T satisfying ϕ.

27

CHAPTER 3. STRUCTURAL RESULTS REGARDING A LISTING

COMPLEXITY THEORY

Assume that we have a boolean CNF-formula ϕ of n variables such that,

setting T (x1) = 1, ϕ is satisfied whatever value is assigned to the remaining

variables. Clearly, there are at least 2(n−1) truth assignments satisfying ϕ.

That is, the number of solutions is exponential in the size of the input. Hence,

a listing algorithm of time complexity polynomial in the input size only is not

possible, and the output size, i.e. the number of solutions, has to be taken

into account. Even so, several notions of efficiency for listing algorithms can

be considered:

(1) Polynomial Total Time. A listing algorithm runs in polynomial total

time if its time complexity is polynomial in the input size and the output

size. This notion was introduced for the first time by Tarjan in [53];

(2) P-enumerability. We say that a listing algorithm P-enumerates the

solutions of a relation R if the time required to output them is bounded

by p(n)C, where p(n) is a polynomial in the input size n and C is

the number of solutions to output. If such an algorithm exists for a

relation R, then we say that R is P-enumerable (with some slight abuse

of notation, we will also say that the listing problem associated to R is

P-enumerable). The notion of P-enumerability was defined by Valiant

in [54]. Clearly, P-enumerability is a stronger notion than polynomial

total time. Furthermore, if the space complexity of an algorithm that

P-enumerates the solutions of a relation R is polynomial in the input

size only, we say that R is strongly P-enumerable. To the best of our

knowledge, strong P-enumerability was introduced in [25];

(3) Polynomial Delay. A listing algorithm is said to have D delay if it lists

all solutions one after the other in some order, in such a way that:

1. it takes polynomial time in the input size before producing the first

28

3.2. LISTING ALGORITHMS AND THEIR NOTIONS OF EFFICIENCY

solution or halting;

2. after returning any solution, it takes D time before producing an-

other solution or halting.

If D is polynomial (resp. linear, constant) in the input size, then we

say that the algorithm runs with polynomial delay (resp. linear delay ,

constant delay). The notion of polynomial delay was introduced by

Johnson, Yannakakis and Papadimitriou in [34]. Clearly, polynomial

delay is a stronger notion than P-enumerability.

These various notions of efficiency for listing algorithms allow us to define

some subclasses of LP. In particular, we take into consideration the following

subclasses:

Class EP. A listing problem E ∈ LP belongs to class EP if it admits a

polynomial total time listing algorithm. This class has been introduced

in [24];

Class Penu. A listing problem E ∈ LP belongs to class Penu if E is P-

enumerable;

Class Pdel. A listing problem E ∈ LP belongs to class Pdel if it admits a

polynomial delay listing algorithm;

Class Ldel. A listing problem E ∈ LP belongs to class Ldel if it admits a

linear delay listing algorithm.

The inclusion relationships between these subclasses of LP are established in

the following observation.

Observation 3.3. Ldel ⊆ Pdel ⊆ Penu ⊆ EP ⊆ LP.

29

CHAPTER 3. STRUCTURAL RESULTS REGARDING A LISTING

COMPLEXITY THEORY

Proof. Follows from the definitions.

Note that these classes are nonempty. In fact, as we will show in Chapter 5,

there exists a linear delay algorithm for listing all truth assignments satisfying

a 2SAT boolean formula.

3.3 LP-complete listing problems

In this section we define a new subclass of LP, called LPC, which contains

LP-complete listing problems.

Definition 3.4 (LP-complete problems). A listing problem E is LP-complete

if

1. E ∈ LP;

2. the existence of a polynomial total time algorithm for listing the solu-

tions of E implies LP = EP.

More generally, we say that a listing problem E is LP-hard if Condition

2 in Definition 3.4 is satisfied, but we don’t know if E ∈ LP.

Definition 3.5 (Class LPC). LPC ⊆ LP is the class of LP-complete listing

problems.

By definition, if LPC ∩EP 6= ∅, then class LP and class EP collapse. In

the next subsection we show that class LPC is not empty.

30

3.3. LP-COMPLETE LISTING PROBLEMS

3.3.1 An LP-complete problem: LBounded Halting

Let’s consider the binary relation RBH defined as follows1:

RBH :=

{

(〈M, x, 1t〉, y) :
M is the description of a deterministic Turing

machine that accepts (x, y) within t steps

}

.

Note that RBH is an NP relation. In fact, |y| is bounded by t, and so |y|

is polynomially bounded by the length of the input 〈M, x, 1t〉 (hence RBH

is polynomially bounded). Furthermore, whether M accepts (x, y) within t

steps or not is decidable in time polynomial in length of the input 〈M, x, 1t〉:

we just need to simulate M on (x, y) for t steps (hence RBH is polynomially

decidable).

Next, we show that the listing problem LBounded Halting associated

to relation RBH is LP-complete. By definition, LBounded Halting is the

following problem.

Problem. LBounded Halting

Input: a triplet 〈M, x, 1t〉, where M is the description of a deter-

ministic Turing machine, x is a string and t is a natural number.

Output: all strings y such that M accepts (x, y) within t steps.

Our LP-completeness proof of LBounded Halting is based on the follow-

ing result. Levin reductions have been defined in Section 2.4.

1Here, 1t indicates a string of 1s of length t.

31

CHAPTER 3. STRUCTURAL RESULTS REGARDING A LISTING

COMPLEXITY THEORY

Lemma 3.6. Let R ⊆ Σ∗ × Σ∗ be an arbitrary NP relation. Then, there

exists a Levin reduction 〈f, g, h〉 from R to RBH such that,

(x, y) ∈ R⇔ (f(x), y) ∈ RBH ,

for each x, y ∈ Σ∗.

Proof. The proof that we propose is an adaptation of the proof presented in

Claim 2.3.1 of Lecture 2 in [32]. Let R be an arbitrary NP relation. Let pR

be a polynomial such that |y| ≤ pR(|x|) for any (x, y) ∈ R. Let MR be a

polynomial time deterministic Turing machine that, given x, y ∈ Σ∗, decides

whether (x, y) ∈ R, and let tR be a polynomial bounding the running time

of MR. We define f, g, h as follows:

1. f maps an instance x ∈ L(R) to an instance f(x) := 〈MR, x, 1tR(|x|+pR(|x|))〉

of L(RBH);

2. ∀x, y ∈ Σ∗, g(x, y) := y;

3. ∀x, z ∈ Σ∗, h(x, z) := z.

We claim that 〈f, g, h〉 is a Levin reduction from R to RBH such that, for

each x, y ∈ Σ∗, (x, y) ∈ R if and only if (f(x), y) ∈ RBH . First of all,

note that f, g, h are all polynomial time computable (note that the descrip-

tion of MR is a constant string for the reduction). We next prove that

(x, y) ∈ R if and only if (f(x), y) ∈ RBH . Suppose that (x, y) ∈ R. Clearly,

|y| ≤ pR(|x|). Hence, MR accepts (x, y) within tR(|x|+ pR(|x|)) steps. That

is, (〈MR, x, 1tR(|x|+pR(|x|))〉, y) ∈ RBH . The other implication follows analo-

gously.

Actually, Lemma 3.6 says that there exists a Levin reduction from the

generic NP relation R to RBH that preserves the certificates : y ∈ Σ∗ is a

32

3.3. LP-COMPLETE LISTING PROBLEMS

certificate attesting that x ∈ Σ∗ is a yes-instance for the decision problem

associated to R, if and only if the same y is a certificate attesting that in-

stance 〈M, x, 1t〉, to which x is mapped by function f in the Levin reduction,

is a yes-instance for the decision problem associated to RBH . We can now

prove the following result.

Theorem 3.7. LBounded Halting is LP-complete.

Proof. By the argumentation spent at the beginning of this subsection, we

have that LBounded Halting belongs to LP. Hence, Condition 1 in Def-

inition 3.4 is satisfied. We now prove that also Condition 2 in Definition 3.4

holds.

Let R ⊆ Σ∗×Σ∗ be an arbitrary NP relation and let E be the listing prob-

lem in LP associated to R. By Lemma 3.6, we have that there exists a Levin

reduction from relation R to RBH that preserves the certificates. Hence,

if there exists a polynomial total time algorithm for solving LBounded

Halting, then there exists a polynomial total time algorithm for solving E.

Since R has been chosen arbitrary, we have that LBounded Halting is

LP-complete.

Furthermore, by Lemma 3.6, we can say that LBounded Halting is

somehow a strong member of LPC.

Observation 3.8. If LBounded Halting is (strongly) P-enumerable,

then any listing problem in LP is (strongly) P-enumerable. If there exists

a polynomial delay (resp. linear delay, constant delay) algorithm for solving

LBounded Halting, then there exists a polynomial delay (resp. linear

delay, constant delay) algorithm for solving any listing problem in LP.

33

CHAPTER 3. STRUCTURAL RESULTS REGARDING A LISTING

COMPLEXITY THEORY

Proof. The statement follows from the same argumentations spent in the

proof of Theorem 3.7.

Actually, LPC does not contain only LBounded Halting. Indeed,

many other problems are in LPC, thanks to the notion of one-to-one cer-

tificates reduction.

3.3.2 One-to-one certificates reductions: a powerful tool for our

LP-completeness theory

A parsimonious reduction 〈f, g, h〉 from an NP relation RA to an NP rela-

tion RB is a Levin reduction from RA to RB such that |{y : (x, y) ∈ RA}| =

|{z : (f(x), z) ∈ RB}|. We also say that parsimonious reductions preserve

the number of certificates between two NP relations. The notion of parsimo-

nious reduction was introduced in [50], and since then it has played a key role

in the counting complexity theory. In this subsection we consider a special

type of parsimonious reduction for NP relations.

A one-to-one certificates reduction 〈f, g, h〉 from an NP relation RA to

an NP relation RB is a parsimonious reduction from RA to RB such that,

for each x ∈ L(RA), h(x, z) is injective with respect to z (i.e. for each z1, z2,

h(x, z1) = h(x, z2) if and only if z1 = z2). Hence, a one-to-one certificates

reduction from RA to RB provides a one-to-one and onto mapping between

certificates for yes-instance x of RA and certificates for yes-instance f(x)

of RB. The reader can easily verify that the Levin reduction proposed in

Lemma 3.6 is a special case of one-to-one certificates reduction.

One-to-one certificates reductions between NP relations allow us to in-

34

3.3. LP-COMPLETE LISTING PROBLEMS

clude more members in class LPC, thanks to the following observation.

Observation 3.9. Let RA and RB be two NP relations. Let EA and EB

be the listing problems corresponding to RA and RB respectively. Assume

that EA belongs to LPC. If there exists a one-to-one certificates reduction

〈f, g, h〉 from RA to RB, then EB ∈ LPC.

Proof. Clearly, EB ∈ LP. Suppose that there exists a polynomial total time

algorithm that solves problem EB. We show that there exists a polynomial

total time algorithm that solves problem EA. In fact, thanks to the one-to-

one certificates reduction 〈f, g, h〉 from RA to RB, given a string x ∈
∑∗ we

can produce in polynomial time a string f(x) such that x ∈ L(RA) if and only

if f(x) ∈ L(RB). Now, we can apply the polynomial total time algorithm

that solves problem EB in order to list all certificates of yes-instance f(x).

Note that to any certificate z of yes-instance f(x) in EB there corresponds

exactly one certificate y = h(x, z) of yes-instance x in EA; furthermore,

h is polynomial time computable. Hence, combining the polynomial total

time algorithm that solves problem EB with the polynomial time computable

function h, we can list in polynomial total time all certificates of yes-instance

x in EA. That is, EA ∈ EP ∩ LPC and then LP = EP. Hence, EB ∈

LPC.

Let’s consider the binary relation RCS defined as follows2:

RCS :=

{

(C, T) :
C is a boolean circuit, T is a 0/1-assignment to the

circuit’s inputs such that the circuit’s output C(T) = 1

}

.

Note that RCS is an NP relation: obviously |T | is polynomially bounded by

the size of |C|, and it is easy to verify in polynomial time if C(T) = 1 (know-

2See Section 2.3 for some details on boolean circuits

35

CHAPTER 3. STRUCTURAL RESULTS REGARDING A LISTING

COMPLEXITY THEORY

ing the value of a gate’s inputs, which are at most 2, the evaluation of a gate

takes O(1)). Indeed, the NP language associated to relation RCS is the well-

known NP-complete language Circuit Sat. In Claim 2.4.1 of Lecture 2

in [32], it is presented a Levin reduction from RBH to RCS. Actually, the

Levin reduction proposed [32] is a one-to-one certificates reduction from RBH

to RCS (a one-to-one certificates reduction from the generic NP relation to

RCS is implicitly given in several treatments of the theory of computational

complexity: [46] (see Theorem 8.2 at page 171 and Theorem 18.1 at page

442) and [9] (see Lemma 34.5 and Lemma 34.6, pages 987–994)). Hence, it

follows that LCircuit Sat, the listing problem associated to relation RCS,

is LP-complete.

Even if, to the best of our knowledge, this thesis is the first place where

the notion of one-to-one certificates reduction is explicitly given, several of

the parsimonious reductions for NP relations which have been proposed in

the literature are actually one-to-one certificates reductions. For example,

consider relation RSAT defined early in Section 3.2. There exists a one-to-

one certificates reduction from RCS to RSAT (for a full description of it, we

address the reader to [46], Example 8.3, page 163): given a boolean circuit

C, we can easily construct in linear time a boolean CNF -formula ϕ (to each

gate of C there corresponds a variable and some clauses in ϕ) such that,

to each truth assignment satisfying ϕ, there corresponds exactly one 0/1-

assignment to C’s inputs such that the C’s output is equal to 1. Hence,

LSat is LP-complete. Some other listing problems which turn out to be

LP-complete due to one-to-one certificates reductions are those associated

with the following NP relations:

1. R3SAT := {(ϕ, T) : ϕ is a boolean CNF-formula with at most 3 literals

per clause, T is a truth assignment satisfying ϕ}. One-to-one certificates

36

3.3. LP-COMPLETE LISTING PROBLEMS

reduction from: RSAT ([55] or [46]);

2. RHP := {(G, P) : G is an undirected graph, P is an Hamiltonian path

in G}. One-to-one certificates reduction from: RSAT ([46]);

3. RILP := {(〈A, b〉, x) : A is an integer matrix, b is an integer vector

and x is an integer vector such that Ax ≤ b}. One-to-one certificates

reduction from: R3SAT ([51]);

4. RHS := {(〈S, C, K〉, S ′) : S is a finite set, C is a collection of subsets of

S, K ≤ |S|, and S ′ is an hitting set for C of size at most K. One-to-one

certificates reduction from: R3SAT ([56]);

Note that, by Observation 3.8 and the proof of Observation 3.9, listing prob-

lems proved to be LP-complete by one-to-one certificates reductions are some-

how quite strong members of LPC.

Observation 3.10. Let R be an NP relation. Let E be the listing problem

associated to relation R. Assume that E has been proved to be LP-complete

showing a one-to-one certificates reduction (or a composition of one-to-one

certificates reductions) from the generic NP relation to R. Then, if E is

(strongly) P-enumerable, then any listing problem in LP is (strongly) P-

enumerable. If there exists a polynomial delay algorithm for solving E, then

there exists a polynomial delay algorithm for solving any listing problem in

LP.

Proof. The statement follows from Observation 3.8 and from analogous ar-

gumentations as those spent in the proof of Observation 3.9.

At this point of the dissertation, the reader might have gotten the impres-

37

CHAPTER 3. STRUCTURAL RESULTS REGARDING A LISTING

COMPLEXITY THEORY

sion that the LP-completeness of the listing problem associated to an NP

relation R implies the NP-completeness of language L(R) associated to R.

In the following Section we show that this is not the case.

3.4 LP-completeness of some listing problems whose

decision version is in P

A 1Valid CNF-formula (resp. 0Valid CNF-formula) of n variables is a

boolean CNF-formula ϕ such that the truth assignment 1n (resp. 0n), which

maps all n variables to 1 (resp. 0), satisfies ϕ. Consider the following binary

relation:

R1V SAT :=

{

(ϕ, T) :
ϕ is a 1Valid boolean CNF-formula,

T is a truth assignment satisfying ϕ

}

.

It can be easily verified that R1V SAT is an NP relation. Furthermore, little

effort is needed to show that the language L(R1V SAT) associated to relation

R1V SAT is in P: by definition, 1n is a truth assignment that satisfies every

1Valid CNF-formula. Let’s now consider the listing problem associated to

relation R1V SAT .

Problem. L1Valid-Sat

Input: a 1Valid CNF-formula ϕ of n variables.

Output: all truth assignments that satisfy ϕ.

In [10] it is proved that there is no polynomial delay algorithm that lists all

truth assignments satisfying a 1Valid CNF-formula unless P = NP. Next,

we show that L1Valid-Sat is LP-complete.

38

3.4. LP-COMPLETENESS OF SOME LISTING PROBLEMS WHOSE

DECISION VERSION IS IN P

Theorem 3.11. L1Valid-Sat is LP-complete.

Proof. We consider a generic instance of problem Sat. Let ϕ be a CNF-

formula of n variables and m clauses. Hence, ϕ =
∧

j=1,...,m cj. Without loss

of generality, we can assume that ϕ is not a 1Valid CNF-formula. We define

an instance of problem 1Valid-Sat as follows:

ϕ′ :=
∧

i=1,...,n

∧

j=1,...,m

(cj ∨ xi).

Clearly, ϕ′ is a 1Valid CNF-formula. We denote by Sf the set of all truth

assignments satisfying a CNF-formula f . Then, the following holds.

Claim. Sϕ′ = Sϕ ∪ {1
n}.

By construction, Sϕ′ ⊇ Sϕ ∪ {1n}. We need to prove that Sϕ′ \

{1n} ⊆ Sϕ.

Let T be a truth assignment in Sϕ′ \ {1n}. Hence, there exists

k ∈ {1, 2, . . . , n} such that T (xk) = 0. Note that,

ϕ′ =

(

∧

j=1,...,m

(cj ∨ xk)

)

∧





∧

i 6=k

∧

j=1,...,m

(cj ∨ xi)



 .

Hence, in order to satisfy ϕ′, T must satisfy
∧

j=1,...,m cj , that is ϕ.

Hence, T ∈ Sϕ.

Now, suppose that we have a polynomial total time algorithm A for listing

all truth assignments of ϕ′. Then, we can derive a polynomial total time

algorithm B for listing all satisfying truth assignments of ϕ: the algorithm

is basically algorithm A except that it rejects solution 1n. Clearly, B is a

polynomial total time algorithm since its time complexity is polynomial in

the input size and polynomial in |Sϕ| + 1. Hence, LSat ∈ EP, and this

implies that LP = EP.

39

CHAPTER 3. STRUCTURAL RESULTS REGARDING A LISTING

COMPLEXITY THEORY

More generally, let’s consider the binary relation

RV SAT :=

{

(〈ϕ, T ∗〉, T) :
ϕ is a boolean CNF-formula,

T, T ∗ are truth assignments satisfying ϕ

}

.

Obviously, RV SAT is an NP relation. Furthermore, analogously to R1V SAT ,

the language L(RV SAT) associated to relation RV SAT is in P: by definition,

T ∗ |= ϕ.

The listing problem LValid-Sat associated to RV SAT is the following.

Problem. LValid-Sat

Input: a CNF-formula ϕ of n variables and a truth assignment such

that T |= ϕ.

Output: all truth assignments that satisfy ϕ.

Corollary 3.12. LValid-Sat is LP-complete.

Proof. Follows from Theorem 3.11.

The reader may argue that relations R1V SAT and RV SAT are somehow ar-

tificial. We conclude this chapter by describing a more natural NP relation

such that, the decision problem associated to it is in P, while the listing

problem associated to it is LP-complete.

40

3.4. LP-COMPLETENESS OF SOME LISTING PROBLEMS WHOSE

DECISION VERSION IS IN P

3.4.1 LPrime Implicants is LP-complete

A monotone boolean formula ϕ is a boolean formula in which negation sym-

bols do not appear, that is, all literals are positive and only disjunction and

conjunction operations are allowed. An implicant of such formula is a subset

I of the variables such that, setting all variables in I equal to 1, ϕ is satisfied

whatever value is assigned to the variables not in I. A prime implicant is an

implicant which is minimal, that is, it does not contain any other implicant

as a proper subset. Consider the following binary relation:

RPI :=

{

(ϕ, I) :
ϕ is a monotone boolean formula,

I is a prime implicant of ϕ

}

Note that relation RPI is an NP relation. In fact, a prime implicant is a

subset of the variables (hence RPI is polynomially balanced). Furthermore,

give a monotone boolean formula ϕ and a subset I of its variables, I is an

implicant of ϕ if and only if the truth assignment T I , defined as

T I(xi) =

{

1, if xi ∈ I;

0, otherwise,

satisfies ϕ. Moreover, an implicant I is a prime implicant if, for every x ∈ I,

I \ {x} is not an implicant of ϕ. Hence, RPI is polynomially decidable.

Let us call Prime Implicants the decision problem associated to rela-

tion RPI . The following result holds.

Observation 3.13. Prime Implicants is in P.

Proof. Every monotone boolean formula has a prime implicant since every

monotone boolean formula has at least one implicant: the set of all variables.

41

CHAPTER 3. STRUCTURAL RESULTS REGARDING A LISTING

COMPLEXITY THEORY

Furthermore, given a monotone boolean formula, it is easy to compute

in polynomial time one of its prime implicants applying the greedy strategy

described in Algorithm 3.1. The correctness of Algorithm 3.1 can be easily

verified.

Algorithm 3.1 FindPI(ϕ)

Parameters: ϕ is a monotone boolean formula of n variables x1, x2, . . . , xn;

Output: a prime implicant I of ϕ;

Set I := {x1, x2, . . . , xn};

for j := 1 to n do

if I \ {xj} is an implicant of ϕ then

remove xj from I;

return I.

We now consider the listing problem LPrime Implicants associated to

relation RPI .

Problem. LPrime Implicants

Input: a monotone boolean formula ϕ of n variables.

Output: all prime implicants of ϕ.

In [31] it is proved that there is no polynomial total time algorithm listing all

prime implicants of a monotone boolean formula unless P = NP. Next, we

show that the problem of listing all prime implicants of a monotone boolean

formula is LP-complete.

Theorem 3.14. LPrime Implicants is LP-complete.

42

3.4. LP-COMPLETENESS OF SOME LISTING PROBLEMS WHOSE

DECISION VERSION IS IN P

Proof. We prove that LPrime Implicants is LP-complete showing that

the existence of a polynomial total time algorithm for LPrime Implicants

would imply a polynomial total time algorithm for LSat.

Let ϕ be a boolean CNF formula with variables x1, x2, . . . , xn, with n > 1.

Let ϕ′ be the boolean CNF formula with variables t1, f1, t2, f2, . . . , tn, fn

obtained from ϕ applying the following replacement rules:

• replace each positive literal xi with variable ti;

• replace each negative literal x̄i with variable fi.

Let ϕ′′ be the monotone boolean formula defined as

ϕ′′ := A ∨ (B ∧ ϕ′) ,

where

• A :=
∨

j=1,...,n (tj ∧ fj);

• B :=
∧

j=1,...,n (tj ∨ fj).

The following claims regarding the prime implicants of ϕ′′ hold.

Claim 1. If I is a prime implicant of ϕ′′, then I is a prime impli-

cant either of A or of B ∧ ϕ′.

The claim trivially follows from the definition of ϕ′′.

Claim 2. If I is a prime implicant of B ∧ϕ′, then tj ∈ I or fj ∈ I

for every j ∈ {1, 2, . . . , n}. Hence, |I| ≥ n.

The claim trivially follows from the definition of B.

Claim 3. If I is a prime implicant of A, then I = {tj, fj} for some

43

CHAPTER 3. STRUCTURAL RESULTS REGARDING A LISTING

COMPLEXITY THEORY

j ∈ {1, 2, . . . , n}. Furthermore, I = {tj, fj} is a prime implicant

of ϕ′′ for every j ∈ {1, 2, . . . , n}.

The claim follows from the definition of A and Claim 2.

Claim 4. I is a prime implicant of ϕ′′ if and only if either I is a

prime implicant of A, or I is a prime implicant of B∧ϕ′ such that

|I| = n.

The claim follows from Claim 2 and Claim 3.

Now, let T be a truth assignment satisfying ϕ. We define IT := {ti : T (xi) =

1} ∪ {fi : T (xi) = 0}. Clearly, IT is an implicant of ϕ′. Furthermore,

by definition, exactly one between tj and fj belongs to IT for every j ∈

{1, 2, . . . , n}. Hence, IT is a prime implicant of B ∧ ϕ′. By Claim 4, we

conclude that IT is a prime implicant of ϕ′′.

Conversely, let I be a prime implicant of both ϕ′′ and B∧ϕ′. Hence, |I| = n

and I contains exactly one between tj and fj for every j ∈ {1, 2, . . . , n}. We

define a truth assignment T I for ϕ as follows:

T I(xi) =

{

1, if ti ∈ I;

0, if fi ∈ I.

By our assumptions, since I is a prime implicant of B ∧ ϕ′, we have that I

is an implicant of ϕ′. Hence, by definition of ϕ′, we have that T I satisfies

ϕ. Furthermore, given any two different prime implicants I1 and I2, the

corresponding truth assignments T I1 and T I2 are different.

Hence, we have proved that the number of prime implicants of ϕ′′ is equal to

the number of truth assignments satisfying ϕ plus n. Furthermore, given a

prime implicant of ϕ′′ different than {tj, fj} for every j ∈ {1, 2, . . . , n}, we

can easily compute in linear time a truth assignment satisfying ϕ.

Assume that there exists a polynomial total time algorithm for listing all

44

3.4. LP-COMPLETENESS OF SOME LISTING PROBLEMS WHOSE

DECISION VERSION IS IN P

prime implicants of a monotone boolean formula. Then, we can apply it to

ϕ′′. Every time it outputs a prime implicant I of ϕ′′, if I = {tj, fj} for some

j ∈ {1, 2, . . . , n} then we discard it, otherwise we compute an assignment

T I for ϕ as described above. Hence, we obtained an algorithm for listing all

truth assignments satisfying ϕ of time complexity polynomial in the input size

and polynomial in |X| + n, where |X| is the number of truth assignments

satisfying ϕ. That is, we obtained a polynomial total time algorithm for

LSat.

Theorem 3.14 shows that there exist natural NP relations such that the

listing problem associated to them is LP-complete, although the decision

problem associated to them is in P. We conclude the chapter providing a re-

sult which relates the difficulty to efficiently list LP-complete problems with

the mighty question “Is P = NP?”. In [54], Valiant claim that the listing

problem associated to an NP relation whose corresponding decision problem

is NP-complete is not P-enumerable in general unless P = UP, where UP

is the class of languages accepted in polynomial time by unambiguous non-

deterministic Turing machines, those with the property that for any input

of the machine there is at most one accepting computation. Furthermore, it

is also obvious that there is no polynomial delay listing algorithm for listing

problem associated to NP relations whose corresponding decision problem

is NP-complete, unless P = NP (e.g., see [10]). Thanks to Theorem 3.14

and since there is no polynomial total time algorithm listing all prime impli-

cants of a monotone boolean formula unless P = NP [31], we can prove the

following result.

Theorem 3.15. There is no polynomial total time algorithm for any LP-

complete problem unless P = NP.

45

CHAPTER 3. STRUCTURAL RESULTS REGARDING A LISTING

COMPLEXITY THEORY

Proof. Let E be an arbitrary LP-complete problem. Suppose that there

exists a polynomial total time algorithm for solving E. By definition of LP-

completeness, this implies that there exists a polynomial total time algorithm

for solving any problem in LP. In particular, this implies that there exists

a polynomial total time algorithm for solving LPrime Implicants. But,

there is no polynomial total time algorithm listing all prime implicants of a

monotone boolean formula unless P = NP [31].

46

Chapter 4

On listing solutions of a broad class of

combinatorial optimization problems

In this chapter, we investigate the complexity of listing solutions of a broad

class of combinatorial optimization problems. We show that every time we

have a good polyhedral description of a combinatorial problem, then we can

efficiently list all (optimal) solutions of the combinatorial problem.

4.1 Introduction

A combinatorial ensemble C is a family of couples 〈S,F〉, also called instances

of the combinatorial ensemble, where S, also called the ground set , is a finite

set of elements and F , also called the feasible family, is a family of subsets of

S. The members of F are called feasible solutions. We assume F to be given

implicitly by a compact representation, as shown by the following examples

of combinatorial ensemble:

• the matching ensemble, where S is the edge set of a graph G, and F is

the family of matchings of G. Here, G is a compact representation of

F ;

47

CHAPTER 4. ON LISTING SOLUTIONS OF A BROAD CLASS OF

COMBINATORIAL OPTIMIZATION PROBLEMS

• the spanning tree ensemble, where S is the edge set of a graph G, and F

is the family of spanning trees of G. Here, G is a compact representation

of F ;

• the truth assignment ensemble, where S is the set of variables of a

boolean formula ϕ and F is the family of truth assignments satisfying

ϕ. Here, ϕ is a compact representation of F .

The size of an instance of a combinatorial ensemble is actually the size of the

compact representation of F .

In the combinatorial decision problem associated to a combinatorial en-

semble, given an instance 〈S,F〉, the goal is to decide whether F is an empty

family or not. An example of combinatorial decision problem is the following

one.

Example 1. Satisfiability

Given a boolean formula ϕ of n variables, is ϕ satisfiable?

In the combinatorial search problem associated to a combinatorial ensemble,

given an instance 〈S,F〉, the goal is to return a member of F (if F is not

empty). An example of combinatorial search problem is the following one.

Example 2. Matching Problem

Given a graph G = (V, E), find a matching of G.

Among the problems that we consider in this chapter of the thesis, there

is the combinatorial listing problem associated to a combinatorial ensemble:

48

4.1. INTRODUCTION

given an instance 〈S,F〉, list all members of F (if F is not empty).

Example 3. Spanning Tree Listing Problem

Given a graph G = (V, E), list all spanning trees of G.

Given a ground set S, to each subset F of S we can associate univocally

a vector χF ∈ {0, 1}S, called the incidence vector of F , defined as follows:

χF
e = 1 if element e ∈ F , while χF

e = 0 if element e /∈ F . Given an instance

〈S,F〉 of a combinatorial ensemble, we denote by IF the set of incidence

vectors corresponding to the feasible solutions in F . Note that if F = 2S,

IF is the set of the vertices of the 0/1-hypercube in RS. Given any in-

stance 〈S,F〉, the convex hull of IF is a 0/1-polytope P〈S,F〉 whose vertices

are exactly the vectors in IF . It follows that, given an instance 〈S,F〉 of a

combinatorial ensemble, the combinatorial decision problem corresponds to

deciding whether P〈S,F〉 is empty or not, the combinatorial search problem

corresponds to returning a vertex of P〈S,F〉 (if P〈S,F〉 is not empty), and the

combinatorial listing problem corresponds to returning all vertices of P〈S,F〉

(if P〈S,F〉 is not empty).

We say that a combinatorial ensemble has a compact description (resp.

dominant compact description), if the description of P〈S,F〉 (resp. P ↑〈S,F〉, the

dominant of P〈S,F〉) in terms of inequalities can be obtained in polynomial

time in the size of instance 〈S,F〉.

We say that a combinatorial ensemble is separable (resp. dominant sepa-

rable), if we have a separation algorithm for P〈S,F〉 (resp. P ↑〈S,F〉), that is, a

polynomial time algorithm that, given a rational z ∈ RS
≥0, tests if z belongs

to P〈S,F〉 (resp. P ↑〈S,F〉), or, if not, returns a rational vector c ∈ RS such that

49

CHAPTER 4. ON LISTING SOLUTIONS OF A BROAD CLASS OF

COMBINATORIAL OPTIMIZATION PROBLEMS

cx < cz for each x ∈ P〈S,F〉 (resp. x ∈ P ↑〈S,F〉). It follows by definition that

if a combinatorial ensemble has a compact description, then it is separable:

in fact, given a rational z ∈ RS
≥0, if z satisfies all the inequalities in the

description of P〈S,F〉, then z ∈ P〈S,F〉; otherwise, if ax ≤ b is an inequal-

ity in the description of P〈S,F〉 such that az > b, then we return vector a.

However, note that the contrary is not true. That is, there exist separable

combinatorial ensembles which do not have a compact description: an exam-

ple, is the matching ensemble. Analogously, it follows that if a combinatorial

ensemble has a dominant compact description, then it is dominant separable.

In [6], it is shown that the combinatorial listing problem is strongly P-

enumerable for combinatorial ensembles which have a compact description:

actually, the algorithm proposed runs in polynomial space and with polyno-

mial delay. One of the new contributions presented in this chapter of the

thesis, is that the combinatorial listing problem is strongly P-enumerable for

separable combinatorial ensembles.

Theorem 4.1. For any separable combinatorial ensemble, the combinatorial

listing problem is polynomial space polynomial delay solvable.

Theorem 4.1 follows as corollary of Theorem 4.4 introduced later in this

chapter.

In the combinatorial optimization problem associated to a combinator-

ial ensemble, feasible solutions are additionally evaluated by an objective

function and the goal is to find a feasible solution with minimum objective

function value. In details, to each element e of the ground set S corresponds

a weight we ∈ R and we define the objective function as w(F) :=
∑

e∈F we,

for any F ⊆ S. Hence, the input of a combinatorial optimization problem

50

4.1. INTRODUCTION

is a triplet 〈S,F , w〉. An example of combinatorial optimization problem is

the following one.

Example 4. Minimum Weight Spanning Tree Problem

Given a graph G = (V, E) and a weight we ∈ R for each edge e ∈ E,

find a minimum weight spanning tree of G.

From a polyhedral combinatorics point of view, the combinatorial opti-

mization problem corresponds to the problem of returning a vertex χF of

P〈S,F〉 such that w · χF is minimum (if P〈S,F〉 is not empty).

In this chapter of the thesis we investigate the complexity of listing all

minimum value solutions of combinatorial ensembles. With a slight abuse of

notation, we also say that we are interested in listing all optimal solutions

of combinatorial optimization problems. In particular, we study this listing

problem when,

Case 1 the combinatorial optimization problem is polynomial time solvable

for any weight vector w ∈ RS;

Case 2 the combinatorial optimization problem is polynomial time solvable

for any weight vector w ∈ RS
≥0.

In Section 4.2, we consider those combinatorial ensembles satisfying the

hypothesis of Case 1 above. Examples are the perfect matching ensemble (Ed-

monds’ strongly polynomial time algorithm [17] solves the minimum weight

perfect matchings problem) or the spanning tree ensemble (Kruskal’s method

51

CHAPTER 4. ON LISTING SOLUTIONS OF A BROAD CLASS OF

COMBINATORIAL OPTIMIZATION PROBLEMS

[40] or Prim’s method [47] return a minimum weight spanning tree in a

graph). More generally, as we show next, the hypothesis of Case 1 above is

equivalent to assume that the combinatorial ensemble is separable.

Given a combinatorial ensemble C, we define the class of polytopes PC :=

{P〈S,F〉 : 〈S,F〉 is an instance of C}. We refer to PC as the class of poly-

topes associated to the combinatorial ensemble C.

Observation 4.2. Given any combinatorial ensemble C, PC is a proper class

of polytopes.

Proof. See Appendix A.

Hence, sincePC is a proper class of polytopes, the Optimization≡Separation

Theorem (see Theorem 2.3) implies the following.

Theorem 4.3. A combinatorial ensemble is separable if and only if the com-

binatorial optimization problem associated to the combinatorial ensemble is

polynomial time solvable for any weight vector w ∈ RS.

One of the major result proposed in this chapter of the thesis is the fol-

lowing one.

Theorem 4.4. For any separable combinatorial ensemble, the following list-

ing problems are polynomial space polynomial delay solvable:

• list all feasible solutions;

52

4.1. INTRODUCTION

• list all feasible solutions of maximum or minimum cardinality;

• given a weight vector w ∈ RS, list all feasible solutions of maximum or

minimum value;

• given a weight vector w ∈ RS, list all maximum or minimum cardinality

feasible solutions of maximum or minimum value.

In Section 4.2, we provide an algorithmic proof of Theorem 4.4. Theo-

rem 4.4 implies for example that, the (minimum weight) perfect matchings of

a graph and the (minimum weight) spanning trees of a graph are polynomial

space polynomial delay listable.

In Section 4.3, we consider those combinatorial ensembles satisfying the

hypothesis of Case 2 above. Clearly, the hypothesis of Case 1 implies the

hypothesis of Case 2. However, the contrary is not true unless P = NP.

Examples are the s− t cut ensemble ([22, 35, 19]) or the s− t path ensemble

([16]) for which we can compute in polynomial time a minimum value solu-

tion only when the weights are nonnegative. Note that, when the weights are

nonnegative, the problem of minimizing a linear function over a 0/1-polytope

P is equivalent to the problem of minimizing the same linear function over

the dominant of P . Actually, the problem of minimizing w · x with w ∈ RS
≥0

over the dominant P ↑ of a 0/1-polytope P is polynomial time solvable if and

only if the optimization problem over P ↑ is polynomial time solvable. More

generally, as we show next, the hypothesis of Case 2 above is equivalent to

assume that the combinatorial ensemble is dominant separable.

Given a combinatorial ensemble C, we define the class of polyhedra P↑C :=

{P ↑〈S,F〉 : 〈S,F〉 is an instance of C}. We refer to P↑C as the class of domi-

nant polyhedra associated to the combinatorial ensemble C.

53

CHAPTER 4. ON LISTING SOLUTIONS OF A BROAD CLASS OF

COMBINATORIAL OPTIMIZATION PROBLEMS

Observation 4.5. Given any combinatorial ensemble C, P↑C is a proper class

of polyhedra.

Proof. See Appendix A.

Hence, sinceP↑C is a proper class of polyhedra, the Optimization≡Separation

Theorem (see Theorem 2.3) implies the following.

Theorem 4.6. A combinatorial ensemble is dominant separable if and only

if the combinatorial optimization problem associated to the combinatorial

ensemble is polynomial time solvable for any weight vector w ∈ RS
≥0.

In Section 4.3, we provide an example of dominant separable combinato-

rial ensemble for which there exists no polynomial total time algorithm to

list all optimal solutions unless a polynomial total time algorithm exists to

list all truth assignments of a CNF boolean formula. That is, we show that

for this dominant separable combinatorial ensemble, the problem of listing

all optimal solutions is LP-hard.

However, we show that there exists a polynomial space polynomial delay

algorithm that lists all optimal solutions when w ∈ RS
>0.

Theorem 4.7. For any dominant separable combinatorial ensemble, the fol-

lowing listing problems are polynomial space polynomial delay solvable:

• list all feasible solutions of minimum cardinality;

• given a weight vector w ∈ RS
>0, list all feasible solutions of minimum

value;

54

4.2. CASE 1. THE COMBINATORIAL OPTIMIZATION PROBLEM IS

POLYNOMIAL TIME SOLVABLE FOR ANY WEIGHT VECTOR W ∈ RS

• given a weight vector w ∈ RS
>0, list all minimum cardinality feasible

solutions of minimum value.

In Section 4.3, we provide an algorithmic proof of Theorem 4.7. Theo-

rem 4.7 implies that, when the weights are strictly positive, we can list in

polynomial space and polynomial delay all minimum weight s − t cuts of a

graph and all minimum weight s− t paths of a graph.

Many ad-hoc algorithms as well as a general method have been proposed

for the listing problems considered in this chapter of the thesis. We propose

a brief review of some of these results in Section 4.4 at the end of the chapter,

where we compare them with our results.

4.2 Case 1. The combinatorial optimization problem

is polynomial time solvable for any weight vector

w ∈ RS

Let 〈S,F〉 denote the generic instance of a specific combinatorial ensemble,

where S is the ground set and F is a family of subsets of S. Let w ∈ RS

be a weight vector. Our main hypothesis in this section of the thesis is that

there exists a polynomial time algorithm Min(S,F , w) that, for any instance

〈S,F〉 of the combinatorial ensemble and any weight vector w ∈ RS, returns

nil if F is empty, or minF∈F w · χF otherwise.

We show that for separable combinatorial ensembles, the problems:

A. list all members of F ;

55

CHAPTER 4. ON LISTING SOLUTIONS OF A BROAD CLASS OF

COMBINATORIAL OPTIMIZATION PROBLEMS

B. list all members of maximum or minimum cardinality of F ;

C. list all members F of F such that w · χF is maximum or minimum;

D. list all members F of maximum or minimum cardinality of F such that

w · χF is maximum or minimum;

are all strongly P-enumerable. Indeed, for these listing problems we provide

polynomial space polynomial delay algorithms. Actually, among the four

listing problems proposed, we just need to solve one of the two variants of

Problem C, since the other problems are special cases of Problem C. In fact,

assuming that we have an algorithm for listing all members F of F such that

w · χF is minimum, we have that:

• taking w ≡ 0 we list all feasible solutions (i.e., we get Problem A);

• taking w ≡ 1 we list all minimum cardinality feasible solutions, while

taking w ≡ −1 we list all maximum cardinality feasible solutions (i.e.,

we get Problem B);

• considering −w instead of w, we list all members F of F such that w ·χF

is maximum;

• let W := (1 +
∑

e∈S we)χ
S. Considering weight vector +W + w (resp.

+W −w) instead of w, we list all minimum cardinality members F of F

such that w · χF is minimum (resp. maximum). Similarly, considering

weight vector −W + w (resp. −W − w) instead of w, we list all max-

imum cardinality members F of F such that w · χF is minimum (resp.

maximum).

Before defining formally our algorithm for solving Problem C, we would

like to give a flavour of the idea inspiring it. We use Min(S,F , w) as an

56

4.2. CASE 1. THE COMBINATORIAL OPTIMIZATION PROBLEM IS

POLYNOMIAL TIME SOLVABLE FOR ANY WEIGHT VECTOR W ∈ RS

oracle, in order to check if there are optimal solutions of the combinatorial

optimization problem considered which include or not include a particular

element s of the ground set. To be more precise, to check if there exists

a minimum value solution that does not contain element s, we can simply

augment its weight by 1, and apply algorithm Min(S,F , w) on this mod-

ified instance. If the minimum value is the same as the starting instance,

then there exists a minimum value solution that does not contain element

s, otherwise there are no minimum value solutions of the problem which do

not contain s. Analogously, to check if there exists a minimum value solu-

tion that contains element s, we can simply decrease its weight by 1, and

apply algorithm Min(S,F , w) on this modified instance. If the minimum

value of this modified instance is equal to the minimum value of the starting

instance minus 1, then there exists a minimum value solution that contains

element s, otherwise there are no minimum value solutions of the problem

which contain s. We can apply this idea recursively on each element of the

ground set, obtaining a depth first search like algorithm, where the leaves

of the recursion tree correspond to solutions of minimum value for the given

instance of the combinatorial optimization problem considered.

Algorithm 4.1 solves Problem C, where Enumerate is the recursive pro-

cedure defined in Procedure 4.2.

Algorithm 4.1 List(S,F , w)

Parameters: S is a finite set of elements, F is the family of feasible solutions, w ∈ RS;

1: if Min(S,F , w) 6= nil then

2: opt←Min(S,F , w);

3: Enumerate (S,F , ∅, S, w, opt).

57

CHAPTER 4. ON LISTING SOLUTIONS OF A BROAD CLASS OF

COMBINATORIAL OPTIMIZATION PROBLEMS

Procedure 4.2 Enumerate(S,F , F̌ , S̃, w, opt)

Parameters: S is a finite set of elements, F is the family of feasible solutions, F̌ is a

partial optimal solution, S̃ is the subset of S still to be considered, w ∈ RS, opt is the

value of any optimal solution of instance 〈S,F , w〉;

1: if S̃ = ∅ then

2: output F̌ ; return;

3: let s be any element of S̃;

4: w+ ← w + 1 · χ{s}; w− ← w − 1 · χ{s};

5: opt+ ← Min(S,F , w+); opt− ← Min(S,F , w−);

6: if opt+ = opt then

7: Enumerate (S,F , F̌ , S̃ \ {s}, w+, opt+);

8: if opt− = opt− 1 then

9: Enumerate (S,F , F̌ ∪ {s}, S̃ \ {s}, w−, opt−).

4.2.1 Correctness of Algorithm 4.1

In this section, we prove the correctness of Algorithm 4.1. Let S := {s1, s2, . . . , s|S|}.

To simplify our exposition, we can assume without loss of generality that we

choose the elements from S̃ following a fixed order. For example, we can

assume that element s chosen at line 3 of Procedure 4.2 is the one with the

smallest index in S̃, i.e. s := mini{si : si ∈ S̃}.

Lemma 4.8. Let Enumerate(S,F , F̌ ′, S̃ ′, w′, opt′) be an arbitrary recur-

sive call of Procedure 4.2. For any optimal solution F ∗ of instance 〈S,F , w′〉

we have that w′(F ∗) = opt′ and F̌ ′ ⊆ F ∗ ⊆ F̌ ′ ∪ S̃ ′.

Proof. We prove the statement of the lemma by induction on the cardinality

of S \ S̃ ′.

Base Case: |S\S̃ ′| = 0. This situation arises when Algorithm 4.1 invokes

58

4.2. CASE 1. THE COMBINATORIAL OPTIMIZATION PROBLEM IS

POLYNOMIAL TIME SOLVABLE FOR ANY WEIGHT VECTOR W ∈ RS

Procedure 4.2. Hence, we have that F̌ ′ = ∅, S̃ ′ = S, w′ = w and opt′ = opt.

Therefore, the statement is clearly true since for any optimal solution F ∗ of

instance 〈S,F , w〉, we have that w(F ∗) = opt and ∅ ⊆ F ∗ ⊆ S.

Inductive Case: |S \ S̃ ′| = k + 1. We assume that the statement of the

lemma is true for every recursive call such |S \ S̃ ′′| = k and we prove it for

any recursive call such that |S \ S̃ ′| = k + 1.

Let Enumerate(S,F , F̌k+1, S̃k+1, wk+1, optk+1) be an arbitrary recursive

call such that |S \ S̃k+1| = k+1. Let F ∗ be any optimal solution for instance

〈S,F , wk+1〉.

By construction, let Enumerate(S,F , F̌k, S̃k, wk, optk) be the (unique) re-

cursive call which invoke Enumerate(S,F , F̌k+1, S̃k+1, wk+1, optk+1). Two

situations need to be considered.

• F̌k+1 = F̌k, S̃k+1 = S̃k\{sk+1}, wk+1 = wk +1χ{sk+1} and optk+1 = optk.

Firstly, note that wk+1(F
∗) = optk+1 follows from line 5 of Proce-

dure 4.2.

Clearly, sk+1 /∈ F ∗, otherwise F ∗ would be a solution of 〈S,F , wk〉 of

cost optk−1. Absurd, since the cost of an optimal solution in 〈S,F , wk〉

is optk. Furthermore, since optk+1 = optk and sk+1 /∈ F ∗, F ∗ is also an

optimal solution for 〈S,F , wk〉. By inductive hypothesis we have that

F̌k ⊆ F ∗ ⊆ S̃k ∪ F̌k. Hence, F̌k+1 ⊆ F ∗ ⊆ S̃k+1 ∪ F̌k+1.

• F̌k+1 = F̌k ∪ {sk+1}, S̃k+1 = S̃k \ {sk+1}, wk+1 = wk − 1χ{sk+1} and

optk+1 = optk − 1.

Firstly, note that wk+1(F
∗) = optk+1 follows from line 5 of Proce-

dure 4.2.

Clearly, sk+1 ∈ F ∗, otherwise F ∗ would be a solution of 〈S,F , wk〉 of

cost optk−1. Absurd, since the cost of an optimal solution in 〈S,F , wk〉

is optk. Furthermore, since optk+1 = optk − 1 and sk+1 ∈ F ∗, F ∗ is also

59

CHAPTER 4. ON LISTING SOLUTIONS OF A BROAD CLASS OF

COMBINATORIAL OPTIMIZATION PROBLEMS

an optimal solution for 〈S,F , wk〉. By inductive hypothesis we have

that F̌k ⊆ F ∗ ⊆ S̃k ∪ F̌k. Hence, F̌k+1 ⊆ F ∗ ⊆ S̃k+1 ∪ F̌k+1.

Lemma 4.9. Consider any recursive call Enumerate(S,F , F ′, S̃ ′, w′, opt′)

of Procedure 4.2 such that S̃ ′ 6= ∅. Let OPT (S,F , w′) be the set of optimal

solution of instance 〈S,F , w′〉. We have that,

OPT (S,F , w′) = OPT (S,F , w+) ∪̇ OPT (S,F , w−).1

Proof. Let s be the element chosen at line 3 of Procedure 4.2 during the recur-

sive call Enumerate(S,F , F ′, S̃ ′, w′, opt′). In order to prove the statement

of the lemma, we need to consider separately the two inclusions.

OPT (S,F , w′) ⊇ OPT (S,F , w+) ∪OPT (S,F , w−). Let F+ be any opti-

mal solution of instance 〈S,F , w+〉. By Lemma 4.8 we have that s /∈

F+. Furthermore, w+(F+) = opt′. Hence, F+ is an optimal solution

of instance 〈S,F , w′〉. Analogously, let F− be any optimal solution of

instance 〈S,F , w−〉. By Lemma 4.8 we have that s ∈ F−. Further-

more, w−(F−) = opt′− 1. Hence, F− is an optimal solution of instance

〈S,F , w′〉.

OPT (S,F , w′) ⊆ OPT (S,F , w+) ∪OPT (S,F , w−). Let F ∗ be any opti-

mal solution of instance 〈S,F , w′〉. If s ∈ F ∗, then w−(F ∗) = optk − 1

and F ∗ is an optimal solution for 〈S,F , w−〉. Otherwise, if s /∈ F ∗, then

w+(F ∗) = optk and F ∗ is an optimal solution for 〈S,F , w+〉.

1∪̇ stands for the disjoint union.

60

4.2. CASE 1. THE COMBINATORIAL OPTIMIZATION PROBLEM IS

POLYNOMIAL TIME SOLVABLE FOR ANY WEIGHT VECTOR W ∈ RS

Furthermore, by Lemma 4.8 we have that OPT (S,F , w+)∩OPT (S,F , w−) =

∅.

Theorem 4.10. F is a solution returned by algorithm List(S,F , w) if

and only if F is an optimal solution of Problem C associated to instance

〈S,F , w〉.

Proof. Follows from Lemma 4.8 and Lemma 4.9.

Before proving the time and space complexity of our algorithm, we would

like to observe that if we label with s1, s2, . . . sn the elements of the ground

set, and we choose element s at line 3 of Procedure 4.2 to be s := mini{si :

si ∈ S̃}, then our listing algorithm outputs the (optimal) feasible solutions

in lexicographic order according to the labeling: that is, given two solutions

F1 and F2, if sk is the element of the ground set with smallest index in the

symmetric difference between F1 and F2, then the solution containing sk is

outputted after the solution not containing sk.

4.2.2 Complexity of Algorithm 4.1

In this subsection we discuss both time and space complexity of Algorithm 4.1.

We recall that we assumed Min(S,F , w) to be polynomial time com-

putable in the size of the instance. Note that O(|S|) recursive calls to Proce-

dure 4.2 are needed to return the first solution. Furthermore, once a solution

is returned, at most O(|S|) recursive calls to Procedure 4.2 are needed to

return the next solution or to halt. Hence, Algorithm 4.1 is a polynomial

61

CHAPTER 4. ON LISTING SOLUTIONS OF A BROAD CLASS OF

COMBINATORIAL OPTIMIZATION PROBLEMS

delay algorithm, and this implies that Problem C is P-enumerable.

It can be easily seen that the space complexity of Algorithm 4.1 is polynomial

in the input size only. Hence, Algorithm 4.1 is a polynomial space polynomial

delay algorithm, and this implies that Problem C is strongly P-enumerable.

4.2.3 Example: Algorithm 4.1 lists all minimum spanning trees

In this section we present a simple application of Algorithm 4.1 to the Min-

imum Spanning Tree Problem.

Finding a minimum spanning tree is a classical combinatorial optimiza-

tion problem. There exist many algorithms that solve this problem: among

them, for example, Kruskal’s algorithm [40] and Prim’s algorithm [47]. We

can apply one of these algorithms as black box Min(S,F , w) in our algorithm

List(S,F , w), in order to list all minimum spanning trees.

The input of the Minimum Spanning Tree problem is a graph G = (V, E)

and a weight vector w ∈ RE. According to our definition of combinatorial

ensemble, we have that S = E and the graph G is a compact representation

of F .

Consider for example the graph G drawn on the left side of Figure 4.1.

Note that, the trees T1, T2, T3, T4 drawn on the right side of Figure 4.1

are all the spanning trees of G. We define the weight vector w as fol-

low: w(s1) := 1, w(s2) := 2, w(s3) := 3, w(s4) := 3, w(s5) := 2, that is

w := (1, 2, 3, 3, 2). According to this weight vector, we have that the mini-

mum spanning tree value is 8, and there are two minimum spanning trees,

T1 and T2. Indeed, w(T1) = 8, w(T2) = 8, w(T3) = 9 and w(T4) = 9.

62

4.2. CASE 1. THE COMBINATORIAL OPTIMIZATION PROBLEM IS

POLYNOMIAL TIME SOLVABLE FOR ANY WEIGHT VECTOR W ∈ RS

s2

s3

s5

s4

s1

T1 T2 T3 T4G

Figure 4.1: Minimum Weight Spanning Tree Example: a graph G and all its spanning

trees T1, T2, T3, T4.

Now, we apply Algorithm 4.1 to the given input instance, in order to ob-

tain all minimum spanning trees. Without loss of generality, we can assume

that element s chosen at line 3 of Procedure 4.2 is the one with the smallest

index in S̃, i.e. s := mini{si : si ∈ S̃}.

Figure 4.2 describes the behavior of our listing algorithm when applied on

the given input instance. Each arrow labeled yes in Figure 4.2 means that in

the recursive call considered, condition opt+ = opt at line 6 of Procedure 4.2

is true, while each arrow labeled no in Figure 4.2 means that in the recursive

call considered, condition opt− = opt − 1 at line 8 of Procedure 4.2 is true.

The leaves of the recursive tree drawn in Figure 4.2 correspond to the two

minimum spanning tree value solutions T1 and T2.

63

CHAPTER 4. ON LISTING SOLUTIONS OF A BROAD CLASS OF

COMBINATORIAL OPTIMIZATION PROBLEMS

s1

s2

s3

s4

s5

s4

s5

T1 T2

yes

yes

yes

yes

yes yes

no

no

Figure 4.2: Minimum Weight Spanning Tree Example: Recursion Tree.

4.3 Case 2. The combinatorial optimization problem

is polynomial time solvable for any weight vector

w ∈ RS
≥0

In Section 4.2 we have considered those combinatorial optimization prob-

lems for which we are able to compute Min(S,F , w) for any weight vector

w ∈ RS. Unfortunately, there are many combinatorial optimization problems

for which this is not always the case. Think for example to the minimum

weight cut problem: the problem of computing a minimum weight cut is

polynomially solvable only if the weights are non-negative, while computing

a maximum weight cut is an NP-hard problem.

In this section we consider those combinatorial optimization problems such

that there exists a polynomial time algorithm Min(S,F , w) that, for any in-

stance 〈S,F , w〉 with w ∈ RS
≥0, returns nil if F is empty, or minF∈F w · χF

64

4.3. CASE 2. THE COMBINATORIAL OPTIMIZATION PROBLEM IS

POLYNOMIAL TIME SOLVABLE FOR ANY WEIGHT VECTOR W ∈ RS
≥0

otherwise. We recall that this hypothesis is equivalent to consider dominant

separable combinatorial ensembles.

It should be clear that Algorithm 4.1 defined in Section 4.2 cannot do the

job: in fact, we are not allowed to decrease the weight of an element of the

ground set to a negative value, otherwise Min(S,F , w) cannot be applied.

Indeed, we show that there exists a combinatorial optimization problem such

that we can compute a minimum objective value solution for any w ∈ RS
≥0,

but such that, listing all its optimal solutions is an LP-hard problem, that is,

if we can list all its optimal solutions, then we can list all truth assignments

that satisfies a CNF-formula.

However, as a partial compensation of this negative result, we first of all

show that for any instance with w ∈ RS
>0, there exists a polynomial space

polynomial delay algorithm that solves the problem:

A. list all members F of F such that w · χF is minimum.

As a by-product of this positive result, we get that for any dominant separable

combinatorial ensemble, there exists a polynomial space polynomial delay

algorithm that solves the problems:

B. list all members of minimum cardinality of F ;

C. list all members F of minimum cardinality of F such that w · χF is

minimum.

Clearly, Problem B and Problem C are special cases of Problem A. In fact,

• taking w ≡ 1 we list all minimum cardinality feasible solutions, (i.e., we

get Problem B);

65

CHAPTER 4. ON LISTING SOLUTIONS OF A BROAD CLASS OF

COMBINATORIAL OPTIMIZATION PROBLEMS

• let W := (1+
∑

e∈S we)χ
S. Considering weight vector +W +w instead

of w, we list all minimum cardinality members F of F such that w ·χF

is minimum (i.e., we get Problem C).

The algorithm that we present for solving Problem A is an adaptation of

Algorithm 4.1 in order to work with those combinatorial optimization prob-

lems considered in this section. The adaptation is very simple: we change

the value used to increase/decrease the weight of the elements of the ground

set in line 4 of procedure Procedure 4.2. Instead of value 1, we add/remove a

value ǫ > 0 such that ǫ ∈
(

0, mini=1,...,|S| {wi}
)

, where wi is the i-th compo-

nent of vector w. With this modification we ensure that no zero or negative

weights arise during the execution of the algorithm.

Algorithm 4.3 solves Problem A, where Enumerate>0 is the recursive

procedure defined in Procedure 4.4.

Algorithm 4.3 List>0(S,F , w)

Parameters: S is a finite set of elements, F is the family of feasible solutions, w ∈ RS
>0;

1: if Min(S,F , w) 6= nil then

2: opt←Min(S,F , w); ǫ←
mini=1,...,|S|{wi}

2
;

3: Enumerate>0(S,F , ∅, S, w, opt, ǫ).

The proof of correctness of Algorithm 4.3 and the complexity analysis are

the same as those presented for Algorithm 4.1 in Case 1. Hence Algorithm 4.3

can list efficiently all optimal solutions of combinatorial optimization prob-

lems like the minimum weight s − t cut problem when all weights involved

are strictly positive.

66

4.3. CASE 2. THE COMBINATORIAL OPTIMIZATION PROBLEM IS

POLYNOMIAL TIME SOLVABLE FOR ANY WEIGHT VECTOR W ∈ RS
≥0

Procedure 4.4 Enumerate>0(S,F , F, S̃, w, opt, ǫ)

Parameters: S is a finite set of elements, F is the family of feasible solutions, F̌ is a

partial optimal solution, S̃ is the subset of S still to be considered, w ∈ RS
>0, opt is

the value of any optimal solution of instance 〈S,F , w〉, ǫ ∈ R>0;

1: if S̃ = ∅ then

2: output F ; return;

3: let s be any element of S̃;

4: w+ ← w + ǫχ{s}; w− ← w − ǫχ{s};

5: opt+ ← Min(S,F , w+); opt− ← Min(S,F , w−);

6: if opt+ = opt then

7: Enumerate>0(S,F , F, S̃ \ {s}, w+, opt+, ǫ);

8: if opt− = opt− ǫ then

9: Enumerate>0(S,F , F ∪ {s}, S̃ \ {s}, w−, opt−, ǫ).

Now, as anticipated, we show that there exists a combinatorial optimiza-

tion problem such that the minimum objective value feasible solution can be

computed in polynomial time for any w ∈ RS
≥0, but such that it is LP-hard

to list all its optimal solutions. The problem that we consider is the following

one.

Problem. Weighted-0Valid-Sat

Input: a 0Valid CNF-formula ϕ of n variables, a non-negative weight

wi associated to each variable xi, with i = 1, . . . , n.

Goal: a minimum value truth assignment of ϕ, where the value of a

truth assignment T is defined as w(T) := Σn
i=1wiT (xi).

The following observations hold for problem Weighted-0Valid-Sat.

Observation 4.11. Weighted-0Valid-Sat is polynomial time solvable.

67

CHAPTER 4. ON LISTING SOLUTIONS OF A BROAD CLASS OF

COMBINATORIAL OPTIMIZATION PROBLEMS

Proof. Since the boolean formula is 0Valid and the weights are nonnegative,

0n is a minimum value solution for every instance of problem Weighted-

0Valid-Sat. Hence, the minimum value is always 0.

Observation 4.12. If all variable weights are strictly positive, then 0n is

the only minimum value truth assignment for problem Weighted-0Valid-

Sat.

Proof. Let T be a minimum value satisfying truth assignment of a 0Valid

formula ϕ. Hence, Σn
i=1wiT (xi) = 0. Since all weights are strictly positive

and T (xi) ≥ 0, we have that T (xi) = 0 for every i = 1, . . . , n. That is,

T = 0n.

Note that if all variable weights are strictly positive we can apply Al-

gorithm 4.3 in order to list all minimum value solutions, that is, just solu-

tion T = 0n. Therefore, LWeighted-0Valid-Sat, the problem of listing

all minimum value truth assignments of a 0Valid formula, is strongly P-

enumerable when all variable weights are strictly positive. But, if the variable

weights are nonnegative, then LWeighted-0Valid-Sat is LP-hard.

Theorem 4.13. LWeighted-0Valid-Sat is LP-hard.

Proof. We consider an instance of problem L0Valid-Sat, that is a 0Valid

boolean formula ϕ of variables x1, x2, . . . , xn. We build an instance of prob-

lem LWeighted-0Valid-Sat as follows. We define ϕ′ := ϕ and w(xi) := 0

for each variable xi. It is easy to check that 〈ϕ′, w〉 is an instance of

68

4.4. COMPARISON WITH OTHER STATE-OF-THE-ART LISTING

ALGORITHMS

LWeighted-0Valid-Sat. Furthermore, every truth assignment satisfying

ϕ is an optimal truth assignment that satisfies ϕ′, and viceversa. This implies

that if there exists a polynomial total time algorithm solving LWeighted-

0Valid-Sat, then there exists a polynomial total time algorithm solving

L0Valid-Sat. But, by Corollary 3.12 in Chapter 3, we have that L0Valid-

Sat is LP-complete. Hence, LWeighted-0Valid-Sat is LP-hard.

Hence, we have proved that when variable weights are non-negative a

polynomial total time algorithm for listing all minimum value satisfying truth

assignments of LWeighted-1Valid-Sat does not exist unless a polynomial

total time algorithm exists for all listing problems in LP.

4.4 Comparison with other state-of-the-art listing al-

gorithms

The listing method that we propose can be applied to a broad class of com-

binatorial ensembles. As such, our listing method implies that for many

well-known combinatorial ensembles, the problem of listing all (optimal) fea-

sible solutions is polynomial space polynomial delay solvable. Up to now,

for many separable combinatorial ensembles the same result has be achieved

working on the single combinatorial ensemble and developing “ad hoc” algo-

rithms for it (see [28] for a catalog of listing algorithms and results), while

with our method we obtain the same result “a priori” (i.e. without developing

an “ad hoc” algorithm) and from a very general framework (even if, to be

fair we have to say that in some cases, the “ad hoc” algorithms proposed in

the literature achieve a linear or constant delay rather than the polynomial

delay we can achieve with our general algorithm: see [28] for some examples).

69

CHAPTER 4. ON LISTING SOLUTIONS OF A BROAD CLASS OF

COMBINATORIAL OPTIMIZATION PROBLEMS

Furthermore, our method implies that the listing problem associated to

several dozens of combinatorial ensembles is polynomial space polynomial

delay solvable, whereas this result was unknown before this thesis: think for

example to the problem of listing all T -joins of a graph and the problem of

listing all simple b-matchings or b-factors of a graph (we address the reader

to [33, 49] to find many more separable combinatorial ensembles on which

our listing algorithm can be applied).

In [6], Bussieck and Lübbecke proved that, given a linear description of

a 0/1-polytope P , the vertex set of P is strongly P-enumerable; actually,

the algorithm proposed runs in polynomial space polynomial delay. As a

consequence, they obtain that if a combinatorial ensemble admits a compact

description, then the problem of listing all feasible solutions of the combina-

torial ensemble is strongly P-enumerable.

It should be clear to the reader that, given a linear description of a 0/1-

polytope P , our algorithm can list all vertices of P in polynomial space and

polynomial delay. Furthermore, as observed in Section 4.1 at the beginning of

this chapter, every combinatorial ensemble which admits a compact descrip-

tion is separable. The contrary is not true. Consider for example the perfect

matching ensemble for non-bipartite graphs: a complete description of the

perfect matching polytope in the non-bipartite case includes the blossom in-

equalities, which are an exponential number in the size of the instance of

the combinatorial ensemble. Instead, the perfect matching polytope admits

a polynomial time separation algorithm (see [45]).

70

Chapter 5

Listing satisfying truth assignments of

XOR and 2SAT formulas

In this chapter of the thesis we investigate the complexity of listing all the

satisfying truth assignments of a:

• CNF-formula with XOR-clauses;

• 2SAT formula.

In both cases, we present a polynomial space linear delay listing algorithm,

whereas only polynomial space polynomial delay listing algorithms were pre-

viously known [10]. We recall to the reader that the size of the input is the

number of literal occurrences in the formula.

5.1 Listing satisfying truth assignments of CNF-formulas

with XOR-clauses

A CNF-formula with XOR-clauses is a CNF boolean formula such that each

clause consists of literals connected by XOR operator (XOR-clause).

71

CHAPTER 5. LISTING SATISFYING TRUTH ASSIGNMENTS OF XOR

AND 2SAT FORMULAS

Example 1. An example of a CNF-formula ϕ with XOR-clauses.

ϕ = (x1 ⊕ x̄2 ⊕ x3) ∧ (x2 ⊕ x3 ⊕ x̄4) ∧ (x̄1 ⊕ x4) ∧ (x1 ⊕ x̄3 ⊕ x̄4)

x1, . . . , x4 are boolean variables.

The problem of deciding whether a CNF-formula ϕ with XOR-clauses is

satisfiable or not is in P: actually, finding a truth assignment for a CNF-

formula with XOR-clauses is equivalent to solving a linear equality system

over GF(2), a problem which is polynomially solvable applying Gaussian

elimination ([18]). In [11], a polynomial time algorithm for counting the

number of truth assignments satisfying a CNF-formula with XOR-clauses is

described.

In this section, we consider the problem of listing all the truth assignments

satisfying a CNF-formula with XOR-clauses. A polynomial space polynomial

delay algorithm for solving this problem is proposed in [10]. In this section,

we describe a polynomial space linear delay listing algorithm. Actually, the

algorithm that we propose has a delay which is linear in the number of

variables only. We also show that we can efficiently compute ranking and

unranking functions for the satisfying truth assignments of a given CNF-

formula with XOR-clauses.

5.1.1 A polynomial space linear delay listing algorithm for CNF-

formulas with XOR-clauses

Our algorithm is based on a well-known characterization that relates CNF-

formulas with XOR-clauses to systems of linear equations over field GF(2).

72

5.1. LISTING SATISFYING TRUTH ASSIGNMENTS OF CNF-FORMULAS

WITH XOR-CLAUSES

In particular, given a CNF-formula ϕ with XOR-clauses having m clauses

and n variables, we can define a system of m linear equations and n vari-

ables as follows. To each clause cj of ϕ corresponds a linear equation over

GF(2), where the right-end side is 1, while the left-end side is obtained by

cj according to the following replacements:

1. XOR operator is replaced by addition operator over GF(2);

2. each negated literal x̄i is replaced by 1 + xi.

It follows immediately from this construction that each truth assignment

satisfying ϕ corresponds exactly to a solution of the linear system.

Example 2. The linear system corresponding to the CNF-formula

ϕ with XOR-clauses proposed in Example 1.






















x1 + x2 + x3 = 0

x2 + x3 + x4 = 0

x1 + x4 = 0

x1 + x3 + x4 = 1

In order to solve the linear system obtained, we can apply the Gauss-Jordan

elimination scheme. We briefly describes Gauss-Jordan method since our list-

ing algorithm relies on the compact representation of the space of solutions

produced by this elimination scheme. In order to simplify our description,

in what follow we assume that m ≥ n (however, the case m < n follows

analogously).

73

CHAPTER 5. LISTING SATISFYING TRUTH ASSIGNMENTS OF XOR

AND 2SAT FORMULAS

Each linear system can be formulated as a matrix equation in the form

A ·X = B,

where A = (ai,j) is the m × n matrix of coefficients of the linear system,

that is, ai,j is the coefficient of variable xj in the i-th equation (since we

are considering field GF(2), we have that ai,j := 1 if xj appear in the i-th

equation, while ai,j := 0 otherwise), X = (xi) is the vector of the variables

of the linear system and B = (bj) is the vector of the right-end side elements

of the linear system. Note that, in our hypothesis, A is a 0/1-matrix and B

is a 0/1-vector.

Example 3. The matrix equation corresponding to the linear system

in Example 2.












1 1 1 0

0 1 1 1

1 0 0 1

1 0 1 1













·X =













0

0

0

1













The Gauss-Jordan elimination scheme operates on the so called augmented

matrix, a m×(n+1) matrix Â obtained considering vector B as the additional

(n+1)-th column of A. The method consists in two phases: in the first phase

we manipulate the matrix Â using the following operations:

• add a multiple of one row to another row;

• interchange rows or columns (except for the last column);

in order to put the matrix into almost tridiagonal form. A matrix A is in

almost tridiagonal form if:

74

5.1. LISTING SATISFYING TRUTH ASSIGNMENTS OF CNF-FORMULAS

WITH XOR-CLAUSES

1. If there are any zero rows, that is rows entirely made up of zeros except

at most the element in the last column, then they are grouped at the

bottom of the matrix;

2. In any two successive non zero rows i, i+1, we have that ai,i = ai+1,i+1 =

1 and ai+1,k = 0 for k = 1, . . . , i.

Note that we have to follow some precautions if some columns interchanges

are involved. In fact, since each column corresponds to a variable of the linear

system, if some columns interchanges are performed, then we have to update

this correspondence. Note that this is equivalent to relabel the variables for

which the correspondening columns are involved in an interchange. However,

without loss of generality and in order to avoid confusion, in what follows we

assume that at the end of first phase variable xi corresponds to i-th column.

Example 4. Almost tridiagonal form of the augmented matrix Â

corresponding to the matrix equation in Example 3.












1 1 1 0 0

0 1 1 1 0

0 0 1 0 1

0 0 0 0 0













Note that, a linear system has no solutions if and only if after the first phase

there is a zero row of matrix Â such that the element in the last column is 1.

Otherwise, in the second phase, we manipulate the non zero rows of matrix

Â using only row operations (adding a multiple of one row to another row)

75

CHAPTER 5. LISTING SATISFYING TRUTH ASSIGNMENTS OF XOR

AND 2SAT FORMULAS

in order to put the matrix into almost diagonal form. That is, if there are k

non zero rows in Â, then:

1. the m− k zero rows are grouped at the bottom of the matrix;

2. Â[1..k][1..k] is the identity matrix of size k.

Example 5. Almost diagonal form of the augmented matrix Â cor-

responding to the matrix equation in Example 3.












1 0 0 1 0

0 1 0 1 1

0 0 1 0 1

0 0 0 0 0













Once the augmented matrix Â is in almost diagonal form, we can show how to

list efficiently all the solutions of the linear system associated. If there are n

non zero rows in matrix Â (that is, k = n), then there is only one solution of

the linear system, and the value assigned to each variable is exactly the value

in each entry of the last column of matrix Â, that is, xi = Âi,n+1. Otherwise,

the system as 2n−k solutions, where the value of variables xk+1, . . . , xn can

be arbitrary chosen (we call xk+1, . . . , xn free variables), while the value of

variables x1, . . . , xk may depend both on the value assigned to xk+1, . . . , xn

and on the corresponding entry of the last column of matrix Â, which is

however fixed. That is, the space of solutions of the linear system admits a

compact representation as follow:

xk+1, . . . , xn = arbitrary value choice;

76

5.1. LISTING SATISFYING TRUTH ASSIGNMENTS OF CNF-FORMULAS

WITH XOR-CLAUSES

x1 = f(xk+1, . . . , xn);
...

xk = f(xk+1, . . . , xn).

Example 6. Compact representation of the space of solutions of the

linear system in Example 3.

x4 = arbitrary value choice;

x1 = x4;

x2 = x4 + 1;

x3 = 1.

Note that this compact representation can be obtained in polynomial time

(the Gauss-Jordan method runs in polynomial time in the size of the linear

system [18]). The listing algorithm that we propose takes advantage of this

compact representation. The idea is the following. Using a (n−k)-bits Gray

code [30], we can generate with constant delay (for example, see [4]) the 2n−k

assignments of the free variables. Each time a new assignment for the free

variables is produced, we compute the value of variables x1, . . . , xk. We show

that this latter computation can be performed in linear time in the number

of variables using the adequate data structure.

Firstly, we permanently fix the value of those variables among x1, . . . , xk

that do not depend on the value of variables xk+1, . . . , xn. In Example 6, we

set variable x3 = 1.

77

CHAPTER 5. LISTING SATISFYING TRUTH ASSIGNMENTS OF XOR

AND 2SAT FORMULAS

Then, for each free variable xi = xk+1, . . . , xn we make a list of all the

variables x1, . . . , xk that depends on the value of xi, that is, xi ←− {xj : j =

1, . . . , k ∧ xj = f(xi)}. In Example 6, we have that x4 ←− {x1, x2}.

To follow, we generate the first (n−k)-bits vector (codeword) of the Gray

code, we assign the value to the free variables and we compute by substitu-

tion the value of the remaining variables. In Example 6, the first codeword

of the 1-bit Gray code is 0, so x4 = 0 and we have that x1 = 0 and x2 = 1.

Note that, the time required to generate the first solution of the linear sys-

tem, including the time to obtain the compact representation, is polynomial

in the input size.

Then, iteratively, we produce the next codeword of the Gray code for the

free variables. In Example 6, the next codeword is 1, so x4 = 1. In general,

this takes constant time and constant change, since a codeword differs in just

the one bit respect to the previous codeword. Hence, only the value of one of

the last n− k variables changes, lets say xi. Therefore, only the value of the

variables in the list of xi changes in this new solution (apart from the value

of variable xi itself). But, since we are in a GF(2) field, the new value of

each variable in the list of xi is equal to its value in the previously generate

solution plus 1 (if the value in the previous solution was 0, now the value in

the new solution is 1, and viceversa). In Example 6, we have x1 = 1 and

x2 = 0. Since a list contains at most k variables, we can output the solutions

of the linear system with linear delay.

The algorithm that we propose for listing all solutions of a CNF formula

with XOR-clauses is schematized in Algorithm 5.1.

78

5.1. LISTING SATISFYING TRUTH ASSIGNMENTS OF CNF-FORMULAS

WITH XOR-CLAUSES

Procedure 5.1 XOR-Listing(ϕ)

Parameters: ϕ is a CNF boolean formula with XOR-clauses.

1: Build the augmented matrix Â corresponding to the given boolean formula ϕ;

2: Apply the two phases Gauss-Jordan methods;

3: if there is a zero row with 1 in the last column then

4: the linear system has no solutions;

5: exit;

6: If some column interchanges have been performed, relabel variables accordingly;

7: Let k be the number of non zero rows;

8: if k = n then

9: output the unique truth assignment of the boolean formula (first n elements of

column n + 1 of Â);

10: exit;

11: for each variable xj with j = k + 1, . . . , n do

12: create a list of elements xi such that xi = f(xj);

13: for each variable xi with i = 1, . . . , k do

14: if xi 6= f(xj) for every variable xj with j = k + 1, . . . , n then

15: assign the value of xi permanently;

16: produce the first codeword of the n−k bits Gray code, where the i-th bit corresponds

to the value of xk+i;

17: assign value to variables xi with j = 1, . . . , k;

18: output the first satisfying truth assignment;

19: for 2n−k − 1 times do

20: generate the next codeword of the Gray code;

21: let j be the index of the bit such that its value has been changed from the previous

codeword;

22: flip the value of xk+j and of the variables in the list of xk+j;

23: output the new truth assignment.

79

CHAPTER 5. LISTING SATISFYING TRUTH ASSIGNMENTS OF XOR

AND 2SAT FORMULAS

5.1.2 Ranking and unranking functions for CNF-formula with

XOR-clauses

The compact representation of the space of solutions of the linear system

associated to CNF-formulas with XOR-clauses has another relevant conse-

quence. Given a set F of n elements, a ranking function assigns a unique

integer in the range [0, n− 1] to each element of F . The unranking function

is the inverse of the ranking function: given an integer k ∈ [0, n − 1], the

value of the function is the element of F of rank k.

We next show that there are very efficient ranking and unranking functions

for the satisfying truth assignments of a CNF-formula ϕ with XOR-clauses.

Clearly, if the linear system has only one solution, then the functions are

trivial. Hence, we can assume that the linear system has 2z solutions, where

z is the number of free variables. Without loss of generality, from now on

we assume that these variables are the first z ones, that is, x1, x2, . . . , xz.

Since each truth assignment of n variables can be seen as a binary number

of n bits, we can identify each truth assignment with the integer number

corresponding to its first z bits. Hence, the functions required can be easily

defined. Given a satisfying truth assignment, the ranking function consists

of computing the integer corresponding to the value of the first z variables.

Given an integer k in [0, 2z − 1], the unranking function assigns to the first

z variables the value according to the binary encoding of k, and computes

the value of the remaining variables by back substitution using the compact

representation of the space of solutions of the linear system associated. In

Algorithm 5.2 and Algorithm 5.3 we formalize the algorithms for computing

the ranking and unranking functions respectively.

80

5.1. LISTING SATISFYING TRUTH ASSIGNMENTS OF CNF-FORMULAS

WITH XOR-CLAUSES

Procedure 5.2 Rank(C, X)

Parameters: C is a compact representation of the truth assignment satisfying a CNF

formula ϕ with XOR-clauses, X is a satisfying truth assignment of ϕ;

1: compute the integer t corresponding to the value in X of the free variables (according

to C);

2: output t.

Procedure 5.3 Unrank(C, t)

Parameters: C is a compact representation of the truth assignment satisfying a CNF

formula ϕ with XOR-clauses, t is the number of the satisfying truth assignment to

output;

1: assign the value to the free variables according to the binary encoding of the given

integer t;

2: compute the value of the remaining variables according to the compact representation

C;

3: output the variables assignment obtained.

81

CHAPTER 5. LISTING SATISFYING TRUTH ASSIGNMENTS OF XOR

AND 2SAT FORMULAS

Worthy of note is the fact that with our unranking procedure we can easily

randomly generate a satisfying truth assignment of a given CNF-formula with

XOR-clauses: we just need to randomly choose an integer number in [0, 2z−

1], where z is the number of free variables, and then apply our unranking

procedure to obtain a randomly generated satisfying truth assignment of the

formula.

5.2 Listing satisfying truth assignments of 2SAT for-

mulas

A 2SAT formula is a boolean formula in conjunctive normal form such that

each clause contains at most two literals. The problem of deciding whether

a 2SAT formula ϕ is satisfiable or not is in P ([7]). Actually, several linear

time algorithms have been proposed to either find a truth assignment that

satisfies a 2SAT formula or conclude that the 2SAT formula is not satisfiable

([21, 2, 15]).

In [55], Valiant proved that the problem of counting the number of satisfy-

ing truth assignments of a 2SAT formula is #P-complete even when restricted

to the case of monotone 2SAT formulas (2SAT formulas with only positive

literals). This implies that if we can count in polynomial time the number of

satisfying truth assignments of a 2SAT formula, then we can solve in poly-

nomial time the counting problem associated to any NP relation.

We consider the problem of listing all the satisfying truth assignments of

a 2SAT formula. A polynomial space polynomial delay algorithm for solving

this problem is proposed in [10]. In this section, we present a polynomial

space linear delay algorithm that lists all satisfying truth assignments of a

82

5.2. LISTING SATISFYING TRUTH ASSIGNMENTS OF 2SAT FORMULAS

2SAT formula.

5.2.1 A polynomial space linear delay listing algorithm for 2SAT

formulas

To simplify exposition, we assume that a truth assignment of a formula is

represented as a collection of literals, one for each variable of the formula.

Furthermore, with a slight abuse of notation, we assume that the empty as-

signment is the only satisfying truth assignment of an empty formula.

First of all we define some notions we use in this section. An empty-clause

in a CNF boolean formula is a clause which contains no literal. If a formula

contains an empty-clause, then it is not satisfiable. A unit-clause in a CNF

boolean formula is a clause which contains only one literal. Given a boolean

formula ϕ, we say that ϕ is an exactly 2SAT boolean formula if each clause

in ϕ contains exactly two literals. Given a CNF boolean formula ϕ, a CNF

boolean formula ϕ′ is a sub-formula of ϕ if each clause in ϕ′ is a clause in ϕ

(note that ∅ and ϕ are both sub-formulas of ϕ). Given a boolean formula ϕ,

we indicate with V ar(ϕ) the set of variables which have at least one literal

in ϕ. Given a set of literals T , we indicate with V ar(T) the set of variables

which have at least one literal in T . Given a boolean formula ϕ, we denote

by Sol(ϕ) the set of all truth assignments which satisfies ϕ. Given a set V of

boolean variables, we denote by All(V) the set of all truth assignments for

V : note that, if V is empty, then All(V) = {∅}. Given two families A, B of

sets, we define

A ⊎B :=

{

∅, if either A or B is empty;

{a ∪ b : a ∈ A, b ∈ B}, otherwise.

83

CHAPTER 5. LISTING SATISFYING TRUTH ASSIGNMENTS OF XOR

AND 2SAT FORMULAS

The following easy to prove observation holds.

Observation 5.1. Let ϕ be any 2SAT formula. Let x be one of the two

literals of a variable in V ar(ϕ). Then,

Sol(ϕ) = Sol(ϕ ∧ x) ∪̇ Sol(ϕ ∧ x).

Most of the algorithms which return a satisfying truth assignment of 2SAT

formulas are based on the unit propagation technique. Actually, unit propa-

gation is used in many heuristics returning a satisfying truth assignment of

a generic CNF boolean formula, like the Davis Putnam Logemann Loveland

algorithm [14, 13]. Unit propagation relies on the fact that if x is the lit-

eral in a unit-clause of a 2SAT formula ϕ, then x must be in any satisfying

truth assignment of ϕ (we say that literal x is forced in ϕ), as stated by the

following observation.

Observation 5.2. Let ϕ be any 2SAT formula. Let x be the literal in a

unit-clause of ϕ. Let ϕ′ be the 2SAT formula obtained removing from ϕ all

clauses containing literal x and all occurrences of literal x. Then,

Sol(ϕ) = {{x}} ⊎ Sol(ϕ′) ⊎All(V ar(ϕ) \ (V ar(ϕ′) ∪ V ar({x}))).

Unit propagation is described Procedure 5.4. Note that if Procedure 5.4

gets in input a 2SAT formula ϕ, then it returns a 2SAT formula ϕ′ and a set

of literals T , such that:

1. either ϕ′ contains an empty clause (hence, ϕ is not satisfiable), or ϕ′ is

an exactly 2SAT sub-formula of ϕ;

2. T is a set of forced literals for ϕ.

84

5.2. LISTING SATISFYING TRUTH ASSIGNMENTS OF 2SAT FORMULAS

Procedure 5.4 UnitProp(ϕ)

Parameters: ϕ is a 2SAT formula;

1: T := ∅;

2: while ϕ contains some unit-clause do

3: let x be the literal in a unit-clause of ϕ;

4: T := T ∪ {x};

5: remove from ϕ all clauses containing literal x;

6: remove from ϕ all occurrences of literal x;

7: return (ϕ, T).

Observation 5.2 generalizes as follows.

Observation 5.3. Let ϕ be a 2SAT boolean formula. Let ϕ′ and T be

respectively the 2SAT formula and the set of literals returned by a call to

UnitProp(ϕ). Then,

Sol(ϕ) = {T} ⊎ Sol(ϕ′) ⊎All(V ar(ϕ) \ (V ar(ϕ′) ∪ V ar(T))).

Observation 5.3 implies that if we can list all satisfying truth assignments

of ϕ′, then we can easily list all satisfying truth assignments of ϕ. We also

say that the satisfying truth assignments of ϕ′ are a compact representation

of the satisfying truth assignments of ϕ.

Let ϕ be any 2SAT formula. Given a variable x ∈ V ar(ϕ), we say that ϕ

is x-free if ϕ admits two satisfying truth assignments T, T ′ such that x ∈ T

and x ∈ T ′. We say that ϕ is free if ϕ is x-free for every variable x ∈ V ar(ϕ).

Note that, every free 2SAT formula is an exactly 2SAT formula.

Let ϕ be any 2SAT formula. Then, either ϕ is not satisfiable, or it is

possible to compute in polynomial time a free sub-formula ϕ′ of ϕ such that

85

CHAPTER 5. LISTING SATISFYING TRUTH ASSIGNMENTS OF XOR

AND 2SAT FORMULAS

the satisfying truth assignments of ϕ′ are a compact representation of the

satisfying truth assignments of ϕ. Consider subroutine Preprocessing(ϕ)

described in Procedure 5.5.

Procedure 5.5 Preprocessing(ϕ)

Parameters: ϕ is a 2SAT boolean formula;

1: if ϕ is not satisfiable then

2: halt;

3: (ϕ, T) :=UnitProp(ϕ);

4: W := V ar(ϕ);

5: while W is not empty do

6: extract a variable x from W ;

7: if the formula ϕ ∧ x is not satisfiable then

8: (ϕ, T ′) :=UnitProp(ϕ ∧ x);

9: T := T ∪ T ′;

10: else if the formula ϕ ∧ x is not satisfiable then

11: (ϕ, T ′) :=UnitProp(ϕ ∧ x);

12: T := T ∪ T ′;

13: return (ϕ, T).

Lemma 5.4. Let ϕ be a satisfiable 2SAT formula. Let ϕ′ and T be re-

spectively the 2SAT formula and the set of literals returned by a call to

Preprocessing(ϕ). Then, ϕ′ is a free 2SAT sub-formula of ϕ. Further-

more,

Sol(ϕ) = {T} ⊎ Sol(ϕ′) ⊎All(V ar(ϕ) \ (V ar(ϕ′) ∪ V ar(T))).

Moreover, Procedure 5.5 runs in polynomial time in the size of ϕ.

Note that more efficient procedures than Procedure 5.5 may exist: how-

ever, our purpose here is just to show that we can obtain a free 2SAT sub-

86

5.2. LISTING SATISFYING TRUTH ASSIGNMENTS OF 2SAT FORMULAS

formula of a satisfiable 2SAT formula in polynomial time in the input size.

From now how we assume to work only on free 2SAT formulas. In fact, if

we have a linear delay algorithm for listing all satisfying truth assignments of

a free 2SAT formula, then, by Lemma 5.4, we can easily derive a linear delay

algorithm for listing all satisfying truth assignments of an arbitrary 2SAT

formula.

5.2.2 A polynomial space linear delay listing algorithm for free

2SAT formulas

The keystone of our algorithm is the following results regarding free 2SAT

formulas.

Lemma 5.5. Let ϕ be a free 2SAT formula. Let x be one of the two lit-

erals of a variable in V ar(ϕ). Let ϕ′ be the formula returned by a call to

UnitProp(ϕ∧ x). Then, ϕ′ is a free 2SAT formula. Furthermore, the sat-

isfying truth assignments of ϕ′ are a compact representation of the satisfying

truth assignments of ϕ that contains literal x.

Proof. Clearly, ϕ′ is an exactly 2SAT sub-formula of ϕ. Assume, for a contra-

diction, that ϕ′ is not a free 2SAT formula. Hence, there exists y ∈ V ar(ϕ′)

such that ϕ′ is not y-free. That is, either ϕ′ ∧ y or ϕ′ ∧ y is not satisfiable.

W.l.o.g., we can assume that ϕ′ ∧ y is not satisfiable. But, since ϕ′ is a

sub-formula of ϕ, this implies that ϕ ∧ y is not satisfiable. Absurd, since ϕ

is free.

The fact that the satisfying truth assignments of ϕ′ are a compact represen-

tation of the satisfying truth assignments of ϕ that contains literal x follows

from Observation 5.3.

87

CHAPTER 5. LISTING SATISFYING TRUTH ASSIGNMENTS OF XOR

AND 2SAT FORMULAS

Note that Lemma 5.5 and Observation 5.1 implicitly define a recursive

procedure to list all satisfying truth assignments of a free 2SAT formula:

choose a variable of the formula, branch on its two possible truth assign-

ments, unit propagate the variable’s truth assignment in the formula, and

call recursively on the reduce formula. The algorithm ListFree2SAT(ϕ)

that we propose is described in Algorithm 5.6. The algorithm relies on some

procedures defined below. All parameters in these procedures are passed by

reference.

Algorithm 5.6 ListFree2SAT(ϕ)

Parameters: ϕ is a free 2SAT boolean formula;

1: Let T be an empty set of literals (kept as a stack);

2: Let C be an empty set of clauses (kept as a stack);

3: Branch(ϕ, T, C).

Procedure 5.7 Branch(ϕ, T, C)

Parameters: ϕ is a free 2SAT boolean formula, T is a set of literals, C is a set of clauses;

1: if ϕ is not empty then

2: let x be a variable in V ar(ϕ);

3: LiterProp(ϕ, x, T, C);

4: Branch(ϕ, T, C);

5: UndoLiterProp(ϕ, x, T, C);

6: LiterProp(ϕ, x, T, C);

7: Branch(ϕ, T, C);

8: UndoLiterProp(ϕ, x, T, C);

9: else

10: Print all members of set {T} ⊎All(V), where V is the set of variables of the input

formula which do not have a literal in T .

88

5.2. LISTING SATISFYING TRUTH ASSIGNMENTS OF 2SAT FORMULAS

Procedure 5.8 LiterProp(ϕ, x, T, C)

Parameters: ϕ is a free 2SAT boolean formula, x is a literal, T is a set of literals, C is

a set of clauses;

1: create an empty stack W ;

2: push literal x into W ;

3: push in C a fake clause (a sentinel) containing x;

4: while W is not empty do

5: pop a literal y from the top of W ;

6: push y into T ;

7: for each clause c containing y do

8: push c into C;

9: delete c from ϕ;

10: for each clause c containing y do

11: let z be the other literal in c;

12: push literal z into W (if z not already in W).

Procedure 5.9 UndoLiterProp(ϕ, x, T, C)

Parameters: ϕ is a free 2SAT boolean formula, x is a literal, T is a set of literals, C is

a set of clauses;

1: pop a clause c from C;

2: while c is not the fake clause containing x do

3: re-insert c in formula ϕ;

4: pop a clause c from C;

5: repeat

6: pop a literal y from T ;

7: until y = x.

89

CHAPTER 5. LISTING SATISFYING TRUTH ASSIGNMENTS OF XOR

AND 2SAT FORMULAS

The reader can easily check that Procedure LiterProp acts on a free

2SAT boolean formula ϕ and a literal x (where x is the literal of a variable

in V ar(ϕ)) exactly as a call to Procedure UnitProp(ϕ ∧ x). Furthermore,

since we work on a single copy of the formula (all parameters are passed

by reference), in order to execute correctly the branch on the two possible

truth assignments of a chosen variable we need to restore the formula as it

was before the unit propagation on the first truth value: Procedure Undo-

LiterProp is somehow the “inverse” of LiterProp, in the sense that it

restores the formula as before a call to LiterProp. Actually, the following

observations hold.

Observation 5.6. Let ϕ be a free 2SAT formula, T be a set of literals, C be

a set of clauses and x be the literal of a variable in V ar(ϕ). Let ϕ′, T ′, C ′ be

ϕ, T, C after a call to LiterProp(ϕ, x, T, C). Let ϕ′′, T ′′, C ′′ be ϕ′, T ′, C ′

after a call to UndoLiterProp(ϕ′, x, T ′, C ′). Then, ϕ = ϕ′′, T = T ′′ and

C = C ′′.

Observation 5.7. Let ϕ be a free 2SAT formula, T be a set of literals and C

be a set of clauses. Let ϕ′, T ′, C ′ be ϕ, T, C after a call to Branch(ϕ, T, C).

Then, ϕ = ϕ′, T = T ′ and C = C ′.

Since Algorithm 5.6 is nothing more than a formal description of the

procedure implied by Lemma 5.5 and Observation 5.1 for listing all satisfying

truth assignments of a free 2SAT formula, the following theorem holds.

Theorem 5.8. Algorithm 5.6 returns all satisfying truth assignments of any

free 2SAT boolean formula.

Next, we show that storing the formula with an adequate data structure,

90

5.2. LISTING SATISFYING TRUTH ASSIGNMENTS OF 2SAT FORMULAS

the delay between to consecutive satisfying truth assignments outputted by

Algorithm 5.6 is linear in the size of the formula. First of all, note that every

time the formula gets empty (lines 9-10 of Procedure 5.7), it is easy to list

with linear delay all satisfying truth assignments T ∗ of the input formula with

T ∗ ⊇ T , using for example a Gray code to generate all possible assignments

for the variables of the input formula which don’t have a literal in T .

The data structure that we need to store the formula, must obey the

following requirements:

1. the cost of retrieving/deleting all clauses containing a literal x is O(K),

where K is the number of clauses containing literal x;

2. the cost of re-inserting a clause c in ϕ is O(1).

To convince the reader that data structures satisfying the above requirements

do exist, we describe one of them in Appendix B.

Note that, if the above requirements are satisfied, it is easy to check that

if K is the number of clauses removed form ϕ in a call to Procedure Liter-

Prop, then Procedure LiterProp runs in O(K). Analogously, if K is the

number of clauses re-inserted in ϕ in a call to Procedure UndoLiterProp,

then Procedure UndoLiterProp runs in O(K). Clearly, this implies that

in at most linear time in the size of the input formula, Algorithm 5.6 out-

puts the first satisfying truth assignment. Furthermore, after Algorithm 5.6

outputs a satisfying truth assignment, in at most linear time in the size of

the input formula the algorithm either outputs another truth assignment, or

it terminates, because all satisfying truth assignments have been outputted.

Since the space used by Algorithm 5.6 is for sure polynomial in the input

91

CHAPTER 5. LISTING SATISFYING TRUTH ASSIGNMENTS OF XOR

AND 2SAT FORMULAS

size, we can conclude that Algorithm 5.6 is a polynomial space linear delay

algorithm.

92

Chapter 6

Conclusions

In this thesis, we have provided some new contributions regarding the general

issue of listing solutions. These contributions can be summarized as follows.

Firstly, we introduced a computational complexity theory for the class of

listing problems associated with NP relations. To the best of our knowledge,

no similar contribution has been proposed before this thesis. We have shown

that under the weak efficiency notion of polynomial total time, several listing

problems turn out to be complete for the class considered. Although most of

them are related to NP-complete decision problems, we have provided some

examples of hard to solve listing problems whose decision version is easy to

solve. These results strengthened our belief that listing problems deserve the

development of their own computational complexity theory.

Secondly, we have described a very general and efficient listing method for

combinatorial problems. Improving a result proposed in [6], we have shown

that whenever we have a good knowledge of the polyhedral description of the

polytope defined by the feasible solutions of a combinatorial problem, then

all feasible solutions are listable in polynomial space and polynomial delay.

Furthermore, we have proved that if the feasible solutions are additionally

93

CHAPTER 6. CONCLUSIONS

evaluated by a linear objective function, then we can list in polynomial space

and polynomial delay all optimal value solutions. Indeed, we have proved

as a general and fundamental fact, that the polynomial space polynomial

delay listability of the (optimal) feasible solutions of a combinatorial prob-

lem follows from the good knowledge of the polyhedral description of the

underlying combinatorial problem. One of the consequences is also that all

minimum/maximum cardinality feasible solutions are efficiently listable. The

value of these results is that from a single framework we can derive many

positive results, whereas up to now many of these results had been worked

out one by one. We have also shown that a good knowledge of the polyhedral

description of the dominant of the polytope defined by the feasible solutions

of a combinatorial problem, does not necessarily imply that we can efficiently

list all (optimal) feasible solutions of the combinatorial problem: in fact, we

have provide an example of dominant separable combinatorial problem where

the existence of a polynomial total time algorithm for listing all (optimal)

feasible solutions would imply a polynomial total time algorithm for the list-

ing problem associated with every NP relations.

Thirdly, we have proposed new polynomial space linear delay algorithms

for listing all satisfying truth assignments of two particular classes of boolean

formulas: 2SAT formulas and CNF formulas with XOR-clauses. Previously,

only polynomial space polynomial delay algorithms were known for these

classes of boolean formulas [10]. Differently from the previously proposed

approaches, our algorithms achieve this improved delay time bound by ex-

ploiting the structure of the space of solutions in the two considered situa-

tions.

We conclude recalling to the reader a relevant open problem related to

the topics considered in this thesis and addressed in many works. In [34],

94

Johnson, Yannakakis and Papadimitriou have proposed a polynomial delay

algorithm for listing all maximal independent sets of a graph. Up to now,

it is unknown whether a polynomial total time algorithm exists to list all

maximal independent sets in hypergraphs (an hypergraph is a couple (V, H),

where V is a set of vertices and H is a collection of subsets of V , called

hyperedges ; clearly, a graph is special case of hypergraph where every hy-

peredge contains precisely two elements). This problem, also known as the

hypergraph transversal problem (the complement of a maximal independent

set in an hypergraph is called a minimal transversal), has been investigated

by several prominent researchers in the last three decades [42, 34, 20, 23]. In

1996, a breakthrough result by Fredman and Khachiyan [23] has established

the existence of a quasi-polynomial time algorithm for the hypergraph dual-

ization problem: given an hypergraph H and a set X of minimal transversal,

either prove that X is the set of all minimal transversals of H, or find a new

minimal transversal T /∈ X for H. The algorithm proposed in [23] has time

complexity nk + mo(log m), where k is a natural number, n is the number of

vertices of the hypergraph, and m = |H|+ |X |. As observed in [23], this re-

sult implies that the hypergraph dualization problem is not NP-hard, unless

any NP-complete problem can be solved in quasi-polynomial time. Note that

the existence of a polynomial time algorithm for the hypergraph dualization

problem would imply the existence of a polynomial total time algorithm for

the hypergraph transversal problem.

95

Bibliography

[1] S. Arora. Reductions, codes, PCPs, and inapproximability. In IEEE

Symposium on Foundations of Computer Science, pages 404–413, 1995.

[2] B. Aspvall, M.F. Plass, and R.E. Tarjan. A linear time algorithm for

testing the truth of certain quantified Boolean formulas. Information

Processing Letters, 8:121–123, 1979.

[3] M. Bellare and S. Goldwasser. The complexity of decision versus search.

SIAM Journal on Computing, 23(1):97–119, 1994.

[4] J.R. Bitner, G. Ehrlich, and E.M. Reingold. Efficient generation of the

binary reflected gray code and its applications. Communication of the

ACM, 19(9):517–521, 1976.

[5] D.P. Bovet and P. Crescenzi. Introduction to the theory of complexity.

Prentice Hall International (UK) Ltd., Hertfordshire, UK, UK, 1994.

[6] M.R. Bussieck and M.E. Lübbecke. The vertex set of a 0/1-polytope is

strongly P-enumerable. Comput. Geom. Theory Appl., 11(2):103–109,

1998.

[7] S.A. Cook. The complexity of theorem proving procedures. Proceedings

of the 3rd Annual ACM Symposium on Theory of Computing, pages

151–158, 1971.

97

BIBLIOGRAPHY

[8] W.J. Cook, W.H. Cunningham, W.R. Pulleyblank, and A. Schrijver.

Combinatorial Optimization. John Wiley & Sons, Inc., New York, NY,

USA, 1998.

[9] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction

to Algorithms. MIT Press, Cambridge, Massachusetts, 2001.

[10] N. Creignou and J.J. Hébrard. On generating all solutions of gener-

alized satisfiability problems. Informatique Théorique et Applications,

31(6):499–511, 1997.

[11] N. Creignou and M. Hermann. Complexity of generalized satisfiability

counting problems. Inf. Comput., 125(1):1–12, 1996.

[12] G.B. Dantzig. Maximization of a linear function of variables subject

to linear inequalities. In T.C. Koopmans, editor, Activity Analysis of

Production and Allocation - Proceedings of a Conference, volume 13 of

Cowles Commission Monograph, pages 339–347. Wiley, New York, 1951.

[13] M. Davis, G. Logemann, and D. Loveland. A machine program for

theorem-proving. Communication of the ACM, 5(7):394–397, 1962.

[14] M. Davis and H. Putnam. A computing procedure for quantification

theory. Journal of the ACM, 7(3):201–215, 1960.

[15] A. del Val. On 2-sat and renamable horn. In Proceedings of the Seven-

teenth National Conference on Artificial Intelligence and Twelfth Con-

ference on Innovative Applications of Artificial Intelligence, pages 279–

284. AAAI Press / The MIT Press, 2000.

[16] E.W. Dijkstra. A note on two problems in connexion with graphs. In

Numerische Mathematik, volume 1, pages 269–271. Mathematisch Cen-

trum, Amsterdam, The Netherlands, 1959.

98

BIBLIOGRAPHY

[17] J. Edmonds. Maximum matching and a polyhedron with 0,1-vertices.

Journal of Research of the National Bureau of Standards (B), 69:125–

130, 1965.

[18] J. Edmonds. Systems of distinct representatives and linear algebra. Jour-

nal of Research of the National Bureau of Standards, 71(B):241–245,

1967.

[19] J. Edmonds and R.M. Karp. Theoretical improvements in algorithmic

efficiency for network flow problems. Journal of the ACM, 19(2):248–

264, 1972.

[20] T. Eiter and G. Gottlob. Identifying the minimal transversals of a hyper-

graph and related problems. SIAM Journal on Computing, 24(6):1278–

1304, 1995.

[21] S. Even, A. Itai, and A. Shamir. On the complexity of timetable and

multicommodity flow problems. SIAM Journal on Computing, 5(4):691–

703, December 1976.

[22] L.R. Ford Jr and D.R. Fulkerson. Maximal flow through a network.

Canadian Journal of Mathematics, 8(3):399–404, 1956.

[23] M.L. Fredman and L. Khachiyan. On the complexity of dualization of

monotone disjunctive normal forms. Journal of Algorithms, 21(3):618–

628, 1996.

[24] K. Fukuda. Note on new complexity classes ENP, EP

and CEP. Manuscript electronically available at URL

http://www.ifor.math.ethz.ch/ifor/staff/fukuda/ENPhome/ENPnote.html,

June 1996.

99

BIBLIOGRAPHY

[25] K. Fukuda, T.M. Liebling, and F. Margot. Analysis of backtrack al-

gorithms for listing all vertices and all faces of a convex polyhedron.

Computational Geometry, 8:1–12, 1997.

[26] K. Fukuda and T. Matsui. Finding all minimum-cost perfect matchings

in bipartite graphs. Networks, 22(5):461–468, 1992.

[27] K. Fukuda and T. Matsui. Finding all the perfect matchings in bipartite

graphs. AMLETS: Applied Mathematics Letters, 7(1):15–18, 1994.

[28] K. Fukuda, T. Matsui, and Y. Matsui. A catalog of enu-

meration algorithms. Project (in progress), ROSO, Depart-

ment of Mathematics, EPFL, 1996. Available on-line at

http://dmawww.epfl.ch/roso.mosaic/kf/enum/enum.html.

[29] M.R. Garey and D.S. Johnson. Computers and Intractability; A Guide to

the Theory of NP-Completeness. W. H. Freeman & Co., San Francisco,

CA, USA, 1979.

[30] E. Gilbert. Gray codes and paths on the n-cube. Bell System Tech. J.,

37:815–826, 1958.

[31] L.A. Goldberg. Efficient Algorithms for Listing Combinatorial Struc-

tures. Cambridge University Press, Cambridge, 1993.

[32] O. Goldreich. Introduction to Complexity Theory. Lecture Notes

Series of the Electronic Colloquium on Computational Complexity,

1999. Downloadable at http://www.eccc.uni-trier.de/eccc-local/ECCC-

LectureNotes/.

[33] M. Grötschel, L. Lovasz, and A. Schrijver. Geometric Algorithms and

Combinatorial Optimization (Algorithms and Combinatorics). Springer,

1994.

100

BIBLIOGRAPHY

[34] D.S. Johnson, M. Yannakakis, and C.H. Papadimitriou. On gener-

ating all maximal independent sets. Information Processing Letters,

27(3):119–123, 1988.

[35] L.R. Ford Jr. and D.R. Fulkerson. A simple algorithm for finding maxi-

mal network flows and an application to the Hitchcock problem. Cana-

dian Journal of Mathematics, 9:210–218, 1957.

[36] S. Kannan and T. Warnow. A fast algorithm for the computation

and enumeration of perfect phylogenies. SIAM Journal on Computing,

26(6):1749–1763, 1997.

[37] N. Karmarkar. A new polynomial-time algorithm for linear program-

ming. Combinatorica, 4(4):373–396, 1984.

[38] R.M. Karp. Reducibility among combinatorial problems. In R.E. Miller

and J.W. Thatcher, editors, Complexity of Computer Computations,

pages 85–103, IBM Thomas J. Watson Research Center, Yorktown

Heights, New York, 1972. Plenum Press.

[39] L.G. Khachiyan. A polynomial algorithm in linear programming. Dok-

lady Akedamii Nauk SSSR, 20:191–194, 1979.

[40] J.B. Kruskal. On the shortest spanning subtree of a graph and the

traveling salesman problem. Proceedings of the American Mathematical

Society, 7:48–50, 1956.

[41] S. Lang. Linear algebra. Addison-Wesley Series in Mathematics.

Addison-Wesley, 1965.

[42] E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. Generating

all maximal independent sets: Np-hardness and polynomial-time algo-

rithms. SIAM Journal on Computing, 9(3):558–565, 1980.

101

BIBLIOGRAPHY

[43] L.A. Levin. Universal sorting problems. Problemy Peredachi Informatsii,

9(3):265–266, 1973. In Russian.

[44] T.S. Motzkin. Beiträge zur Theorie der linearen Ungleichungen. PhD

thesis, University Basel, 1936.

[45] M.W. Padberg and M.R. Rao. Odd minimum cut-sets and b-matchings.

Mathematics of Operations Research, 7:67–80, 1982.

[46] C.M. Papadimitriou. Computational Complexity. Addison-Wesley Pub-

lishing Company, 1994.

[47] R.C. Prim. Shortest connection networks and some generalizations. Bell

System Technical Journal, 36:1389–1401, 1957.

[48] A. Schrijver. Theory of linear and integer programming. John Wiley &

Sons, Inc., New York, NY, USA, 1986.

[49] A. Schrijver. Combinatorial Optimization - Polyhedra and Efficiency,

volume 24 of Algorithms and Combinatorics. Springer-Verlag, Berlin,

2003.

[50] J. Simon. On some central problems in computational complexity. PhD

thesis, Cornell University, Ithaca, N.Y, 1975. Available as Cornell De-

partment of Computer Science Technical Report TR75-224.

[51] M. Sipser. Introduction to the Theory of Computation. Second Edition.

Course Technology, 2005.

[52] U. Takeaki. A fast algorithm for enumerating bipartite perfect match-

ings. In International Symposium on Algorithm and Computation, pages

349–359, 2001.

[53] R.E. Tarjan. Enumeration of the elementary circuits of a directed graph.

SIAM Journal on Computing, 2(3):211–216, 1973.

102

BIBLIOGRAPHY

[54] L.G. Valiant. The complexity of computing the permanent. Theoretical

Computer Science, 8(3):189–201, 1979.

[55] L.G. Valiant. The complexity of enumeration and reliability problems.

SIAM Journal on Computing, 8(3):410–421, 1979.

[56] F. Zane. Circuits, CNFs, and Satisfiability. PhD thesis, Dept. of Com-

puter Science and Engineering, University of California, San Diego, 1998.

103

Appendix A

PC and P↑C are proper classes of

polyhedra

Proof of Observation 4.2. We have to show that for each instance 〈S,F〉 of C,

we can compute in polynomial time in the instance size two natural numbers

nt and st such that, P〈S,F〉 ⊆ Rnt and P〈S,F〉 has facet complexity at most

st. Clearly, nt := |S|. Furthermore, since P〈S,F〉 is the convex hull of some

0/1-vectors, the vertex complexity of P〈S,F〉 is at most the size of vector 1S,

that is
∣

∣1S
∣

∣. By Theorem 2.2, st := 4n2
∣

∣1S
∣

∣ is an upper bound of the facet

complexity of P〈S,F〉. Both values can be computed in polynomial-time in

the instance size.

Proof of Observation 4.5. By definition, P ↑〈S,F〉 = P〈S,F〉 + RS
≥0. Since P〈S,F〉

is the convex hull of some 0/1-vectors, and RS
≥0 = cone({e1, . . . , eS}), where

ei is the vector with all entries equal to 0 except the i-th entry which is

equal to 1, the vertex complexity of P ↑〈S,F〉 is at most
∣

∣1S
∣

∣. By Theorem 2.2,

st := 4n2
∣

∣1S
∣

∣ is an upper bound of the facet complexity of P ↑〈S,F〉. Both

values can be computed in polynomial-time in the input size | 〈S,F〉 |.

105

APPENDIX A. PC AND P↑
C ARE PROPER CLASSES OF POLYHEDRA

106

Appendix B

A data structure for listing all

satisfying truth assignments of 2SAT

formulas

In this appendix, we present a data structure to store free 2SAT formulas

which satisfies the requirements, in terms of efficient operations’ computa-

tion, required by Algorithm 5.6.

Let ϕ be a free 2SAT formula made of m clauses and containing n vari-

ables. In the data structure that we propose, we keep a list of the clauses in

the formula, and, for each of the two literals of the variables in the formula,

we keep a list of the clauses containing that literal. In detail, the data struc-

ture that we propose is made of the following components (see Figure B.1

for an example):

1. a doubly linked list formula, initially made of m elements; formula

represents ϕ, where each element in the list represents a clause c. Each

element of formula contains two couples 〈l, p〉, one for each literal l in

c, where p is a pointer to the element corresponding to clause c in the

list associated to literal l;

107

APPENDIX B. A DATA STRUCTURE FOR LISTING ALL SATISFYING

TRUTH ASSIGNMENTS OF 2SAT FORMULAS

x 1

x 2

x 2

x 3

x 1

x 3

x 1

x 3

x 2

x 1

x 3

x 2nil

formula literal[]

Figure B.1: Given the free 2SAT formula ϕ = (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3), we

can represent it with the above data structure.

2. a 2n entries array literal[], with one entry for each of the two literals

of every variable in ϕ; each entry literal[y] is a pointer to a doubly

linked list, where each element corresponds to a clause c of the formula.

Actually, each element of this list is a pointer to the corresponding clause

in formula (note that this list may be empty if literal y is not contained

in any clause of ϕ).

It is clear that we can retrieve all clauses containing literal x in O(K),

where K is the number of clauses containing literal x, since we just need

to scan the list pointed by literal[x]. Furthermore, the deletion from the

formula of all the clauses containing literal x takes O(K) time, since for any

clause c containing x, we just need to remove the element corresponding to c

both from formula and from the list of both literals which appear in clause c.

Suppose that we want to re-insert into ϕ a clause c, containing literals x

and y. Then, we just need to insert a new element in formula and in the

108

list of both literal x and literal y (clearly, since the elements in the lists used

in this data structure are kept in no particular order, an element is always

add to the top of a list), and to fix coherently the pointers. Clearly, the

re-insertion of a clause can be performed in O(1).

109

Index

RBH , 31

RCS, 35

RSAT , 27

EP, 29

LP, 27

LP-complete, 30

LP-hard, 30

LPC, 30

Ldel, 29

NP, 17

NP-complete, 18

Pdel, 29

Penu, 29

P, 17

P-enumerability, 28

N, 10

R, 10

R>0, 10

R≥0, 10

L1Valid-Sat, 38

LBounded Halting, 31

LCircuit Sat, 36

LPrime Implicants, 42

LValid-Sat, 40

LWeighted-0Valid-Sat, 68

#P, 19

0Valid, 38

1Valid, 38

2SAT formula, 82

alphabet, 16

boolean

circuit, 14

formula, 13

certificate, 18

combinatorial ensemble, 47

dominant separable, 49

separable, 49

cone, 20

conjunctive normal form, 14

constant delay, 29

convex hull, 20

description

compact, 49

dominat compact, 49

dominant, 22

facet complexity, 22

110

INDEX

feasible solutions, 47

function, 10

Gauss-Jordan elimination, 73

graph

directed, 11

undirected, 11

ground set, 47

incidence vector, 49

linear delay, 29

Linear Programming, 22

listing algorithm, 27

Optimization, 23

polyhedra

proper class, 24

polyhedron, 21

polynomial delay, 28

polynomial total time, 28

polytope, 21

problem

combinatorial decision, 48

combinatorial listing, 48

combinatorial optimization, 50

combinatorial search, 48

counting, 19

decision, 17

listing, 19

search, 19

ranking function, 80

reduction, 18

Levin, 19

one-to-one certificates, 34

parsimonious, 34

relation

NP, 26

binary, 10

polynomially balanced, 18

polynomially decidable, 18

Separation, 24

set, 9

strongly P-enumerable, 28

truth assignment, 14

unit propagation, 84

unranking function, 80

vertex, 21

vertex complexity, 22

XOR, 14

XOR-clause, 71

111

