Semantic Management in PESCaDO

Marco Rospocher, FBK
rospocher@fbk.eu :: http://dkm.fbk.eu/rospocher

Joint work with:
Emanuele Pianta, Luciano Serafini, Sara Tonelli
Overview

Part 1: Ontology-based Decision Support

Part 2: Key-concept Extraction for Ontology Engineering
Part 1

ONTOLOGY-BASED DECISION SUPPORT
Decision Making

• The decision making process of a Decision Support System (DSS) typically consists of three phases:

 - Problem: The formulation of the decision problem
 - Data: The gathering and integration of the data relevant for the problem
 - Conclusions: The processing of the data to take a decision on the problem
PESCaDO Approach

- We propose to adopt an ontology-based knowledge base as the main (enhanced) data structure of the DSS:
 - T-Box: formally represents the content manipulated in the three decision-making phases (problem, data, conclusions)
 - A-Box: each request submitted to the system corresponds to a single incrementally-built A-Box (a “semantic request script”)
Advantages

• Facilitates the integration of heterogeneous knowledge and data sources

• Semantic exposure of DSS processing to other services

• Some of the inference steps of the DSS can be performed via state of the art logical reasoning services
Outline of First Part

• The Decision Support Knowledge base (DSKB)
 – Problem component
 – Data component
 – Conclusion component
 – Semantic Request Script (SRS)
• Incremental construction of a SRS
• Exploitation of SRSs
• On Engineering the DSKB
• Conclusions
The Decision Support Knowledge Base

The Decision Support Ontology

- Problem
- hasData
- hasConclusion
- Conclusions
- ProduceConclusion

T-box

- Instantiates Request 1
- Instantiates Request 2
- Instantiates Request n

A-boxes

Semantic Request Scripts
The Problem Component

• Formally describes all the aspects of decision support problems that the user can submit to the DSS

• Examples of content:
 – taxonomy of the request types supported by the system
 – input parameters needed by the DSS to provide adequate decision support
 – users profile
 – ...

• May also be used to dynamically constrain the user input in the DSS User Interface
The Problem Component

- **Request**
 - InstructionRequest
 - SuggestAdministrativePlan
 - ReportRequest
 - CheckAirQualityLimits
 - CheckBlackIceCondition
 - CompareAirQualityInMultipleRegions
 - ReportAirQualityForecast
- **WarningRequest**
 - AnyHealthIssue
 - AnyRestrictionForPrivateTransport
 - WarningDueToEnvironmentalConditions
- **Activity**
 - AttendingOpenAirEvent
 - LongTermStaying
 - GoingOnHolidayLongTermStaying
 - LivingLongTermStaying
 - PhysicalOutdoorActivity
- **Travelling**
 - BikeOrFeetTravelling
 - FeetTravelling
 - BikeTravelling
 - CarTravelling
 - PublicTransportTravelling

- **User**
 - AdministrativeUser
- **EndUser**
 - AdultUser
 - ChildUser
 - ElderlyUser
 - InfantUser
 - PregnantFemaleUser
 - UserSensitiveToAirPollutant
 - UserSensitiveToPolllen
 - UserSensitiveToAlderPolllen
 - UserSensitiveToBirchPolllen
 - UserSensitiveToGrassesPolllen
 - UserSensitiveToMugwortPolllen
 - UserSensitiveToWeather
 - UserSufferingOfAllergicRhinitis
 - UserSufferingOfCirculatoryDisease
 - UserSufferingOfNasalOrEyeAllergy
 - UserSufferingOfRespiratoryDisease
 - YoungUser
- **Expert**
The Data Component

- Formally describes the data accessed and manipulated by the DSS
- An ontology to be used as data component may be already available in the web
- It favors the integration of (structured) data provided by heterogeneous sources (web-sites, LOD)
The Data Component

- It describes environmental related data:
 - meteorological data (e.g., temperature, wind speed)
 - pollen count data
- Details represented:
 - observed, forecast, or historical data,
 - the time period covered
 - type of the data (e.g., instantaneous, average, minimum, maximum)
 - mapping between qualitative and quantitative values
- moderate birch pollen count corresponds to 10–100 grains per meter cube of air
- data source (e.g., measurement station, web-site, web-service) details, e.g., geographical location, confidence value.
- It facilitated the integration of data obtained from heterogeneous sources, and with different techniques
 - e.g. content distillation from text and images
The Conclusion Component

- Formally describes the output produced by the DSS by processing the problem description and the data available, e.g.
 - warnings/suggestions/instructions/decisions
 - data aggregations, data analysis results
- A weight (e.g. confidence, relevance) may be assigned to the conclusions produced
- Tracking of the data that triggered conclusions (“ProduceConclusion” object property)
- User feedback (degree of satisfaction) may also be included
The Conclusion Component

- It describes conclusion types like:
 - **exceedances** of air pollutants limit values detected from data
 - **warnings** and...
SRS: An A-Box of the DSKB

Conclusions

Data
Incrementally building SRSs
Exploitation of Logical Reasoning

• Phase 1: Instantiation of the **problem**
 – consistency check to verify that the **user request is compliant**
 with the problem supported by the DSS

• Phase 2: Instantiation of the **data**
 – **data relevant for the user problem** may be determined via
 ontology reasoning
 • PESCaDO: using “owl:hasValue” restrictions
 – e.g. `userSensitiveToBirchPollen subClassOf RelevantAspect value Rain`

• Phase 3: Instantiation of the **conclusions**
 – instantiation depends on the decision support techniques
 adopted by the DSS
 • PESCaDO: **DL+RuleBased+Fuzzy reasoning**
Exploitation of SRSs

A SRS provides a complete “semantic” snapshot of all the information processed and produced by the DSS for a request, with “explanations”

• **A natural language report can be automatically generated from it**
 – especially appreciated by laymen, media corporations, ...
• **SRSs could be archived in a semantic repository (e.g. Sesame, Virtuoso), incrementally fed**
 – fine-tune the decision support strategies implemented in the DSS
 – expose to the world the DSS processing in LOD format, favoring its exploitation by other applications/web-services
 – easily compute relevant statistics
On Engineering the DSKB

• Checks on the DSKB
 – formal consistency check
 – correct instantiation with the usage in the DSS

• Assessment of the adequacy of the DSKB for the DSS
 – all decision support problems to be supported by the DSS are formally representable in the Problem component
 – all the data relevant for the DSS are characterized in the Data component
 – all the conclusions and explanations to be generated by the DSS are formalized in the Conclusions component

• In PESCaDO:
 – Problem: all the types of problems defined in the use cases can be represented
 – Data: environmental experts assessment (appropriateness: 94% - completeness: 92%)
 – Conclusions: environmental experts assessment (appropriateness: 90% - completeness: 87%)
Conclusions of First Part

• We proposed to adopt an ontology-based knowledge base as the main data structure in DSSs.

• Each decision support request submitted to the DSS corresponds to a semantic request script which describes:
 – the request itself
 – the data relevant for the request
 – the conclusions/suggestions/decisions generated by DSSs

• Demonstrated the advantages in a concrete implementation for an environmental DSS (PESCaDO EU project):
 – integration of heterogeneous sources of data available in the web (e.g., web sites, web services)
 – tracking and exposure in a structured form of all the content processed and produced by the DSS for each request
 – exploitation of logical reasoning for several of the inference steps of the DSS decision-making process
Part 2

KEY-CONCEPT EXTRACTION FOR ONTOLOGY ENGINEERING
Automatic Concept Extraction

• Support ontology modeling by extracting concepts characterizing a domain from a reference text corpus.

• Automatic concepts extraction plays an important role in ontology modeling:
 – To boost the ontology construction/extension phase;
 – To “validate” an ontology against a domain corpus.
Our Contribution

• A framework for supporting ontology engineering by automatic concept extraction from a reference text corpus

• A fully-working and publicly available implementation of the proposed framework
Outline of Second Part

• The Framework

• Implementation of the Framework

• Evaluation

• Usage in PESCaDO
Key-concept Extraction For Ontology Engineering

1. **Corpus Collection**
 - Domain corpus

2. **Key-concept Extraction**
 - Ranked key-concepts

3. **Extended Ontology**
 - Enriched key-concepts

4. **Ontology Extension**
 - Current Ontology

5. **Ontology Terminological Assessment**
 - Ontology To Be Evaluated

6. **Enrichment with external resources**
 - Word Sense Disambiguation

7. **Ontology Terminological Evaluation**
 - Extended Ontology

8. **WordNet**
 - Wikipedia

Key-concept Extraction Process
- Collect domain corpus.
- Extract key-concepts.
- Extend ontology with enriched key-concepts.
- Evaluate ontology terminologically.

External Resources
- WordNet
- Wikipedia
Corpus Collection

• The corpus can be manually or automatically collected (e.g. crawling web pages).

• Corpus could consist of:
 – (large) collection of documents
 • e.g. pollen bulletins crawled on-line
 – A single big document
 • e.g. the BPMN specification.
Key-concept extraction

• Performed by KX (Keyphrase eXtraction) tool.
 – exploits linguistic information and statistical measures to select a list of weighted keywords from documents;
 – handles multi-words;
 – flexible parameters configuration;
 – easily adaptable to new languages, available for English, Swedish, Finnish, French and Italian;
 – ranked 2nd (out of 20) at SemEval2010, task on “Automatic Keyphrase Extraction from Scientific Articles”.
Enrichment with external resources

<table>
<thead>
<tr>
<th>Concepts extracted (Ordered by Relevance)</th>
<th>Relevance</th>
<th>100% matching</th>
<th>Synonym 100% matching</th>
</tr>
</thead>
<tbody>
<tr>
<td>activity</td>
<td>1.00000</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>attribute</td>
<td>0.88020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sequence flow</td>
<td>0.71714</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>business process modeling notation</td>
<td>0.70216</td>
<td></td>
<td></td>
</tr>
<tr>
<td>task</td>
<td>0.49418</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>▼ Wordnet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>▼ Synset #00795720</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wordnet Definition: any piece of work that is undertaken or attempted</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is a: work</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sumo Entry: IntentionalProcess</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>▼ Synonyms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>undertaking</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>project</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>labor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyponyms: cinch, breeze, picnic, snap1, duck soup, child's play, pushover, walkover, piece of cake, adventure, escapade, risky venture, dangerous undertaking, assignment, baby, enterprise, endeavor, endeavour, labor of love, labour of love, marathon, endurance contest, no-brainer, proposition, tall order, large order, venture, Manhattan Project</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>▼ Wikipedia Links</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mapping</td>
<td>0.48253</td>
<td></td>
<td></td>
</tr>
<tr>
<td>flow</td>
<td>0.47920</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ontology Extension

• Enriched key-concepts list matched against the ontology under development (to detect already defined key-concepts);

• The user decides which of the extracted key-concepts to add to the ontology;

• The additional details provided in the enriched list may guide the formalization;
 – e.g. is-a related synsets, definitions, ...
Ontology Terminological Evaluation

- Evaluation metrics are computed on the matching between enriched key-concept list and the ontology.

- New metrics, exploiting weight associated to extracted key-concepts:
 - Weighted recall
 - Weighted F1-measure

Guidelines for estimating an adequate terminological coverage:

- $F1 \geq 0.15$ or
- Weighted $F1 \geq 0.25$

Ontology Terminological Evaluation Results

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>#Ontology Concepts</td>
<td>116</td>
</tr>
<tr>
<td>#Term Extracted</td>
<td>500</td>
</tr>
<tr>
<td>#Concept-Term matchings</td>
<td>58</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision</td>
<td>0.5</td>
</tr>
<tr>
<td>Recall</td>
<td>0.116</td>
</tr>
<tr>
<td>F-Measure</td>
<td>0.18831</td>
</tr>
<tr>
<td>Weighted Recall</td>
<td>0.35375</td>
</tr>
<tr>
<td>Weighted F-Measure</td>
<td>0.41435</td>
</tr>
</tbody>
</table>

Compute Ontology Metrics

Threshold relevance value:

Save only metrics

[Compute]
Collaborative wiki-based tool for modeling (integrated) ontologies and business processes;

Supports an agile collaboration between domain experts and knowledge engineers via multi-mode knowledge access modalities;

Offers several different functionalities:
- Import/export of formal models;
- Views on the is-a hierarchy and processes decomposition;
- Graphical editing.

Available @ http://moki.fbk.eu
PESCaDO Ontology Construction

• Developed in PESCaDO to support the construction of an ontology describing the environmental domain.

• Corpus: plain text corpus composed of 390 pollen bulletins (541,000 tokens).

• The system outputted 91 key-concepts:
 – 26 pollen names (further validated against the Pollen Atlas);
 – 38 key-concepts enriched with additional information;
 – Extracted key-concepts having up to 4 tokens:
 • e.g. “oil seed rape pollen”.
Conclusions of Second Part

• We presented a framework for ontology building/validation based on automatic concept extraction;

• Fully-implemented in a working system;

• Approach evaluated in PESCaDO (environment) and other domains (e.g. business processes);

• Current/Future works:
 – Extend to consider other ontological knowledge (e.g. is-a relations defined in the corpus).
QUESTIONS?

Marco Rospocher, FBK

rospocher@fbk.eu :: http://dkm.fbk.eu/rospocher