

Collaborative NLP-aided ontology modelling

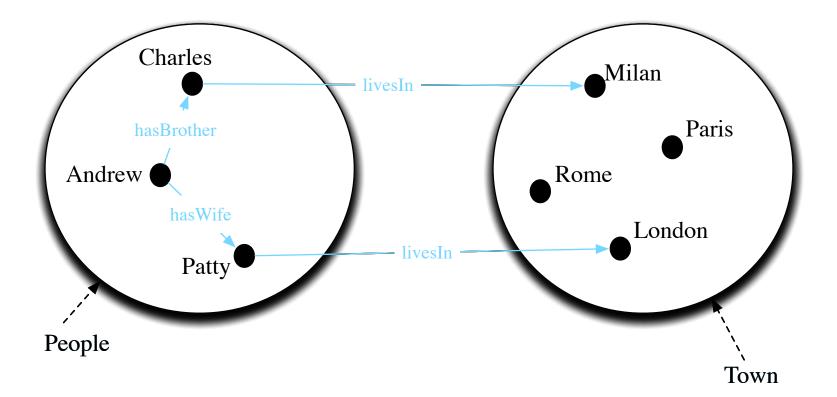
Chiara Ghidini

ghidini@fbk.eu

Marco Rospocher rospocher@fbk.eu

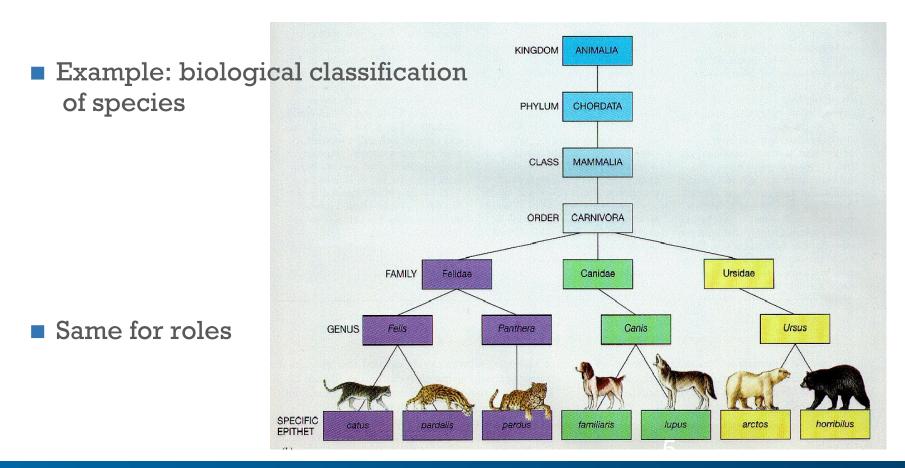
International Winter School on Language and Data/Knowledge Technologies TrentoRISE – Trento, 24th February 2012

Part I ONTOLOGIES & ONTOLOGY MODELLING


What is an ontology?

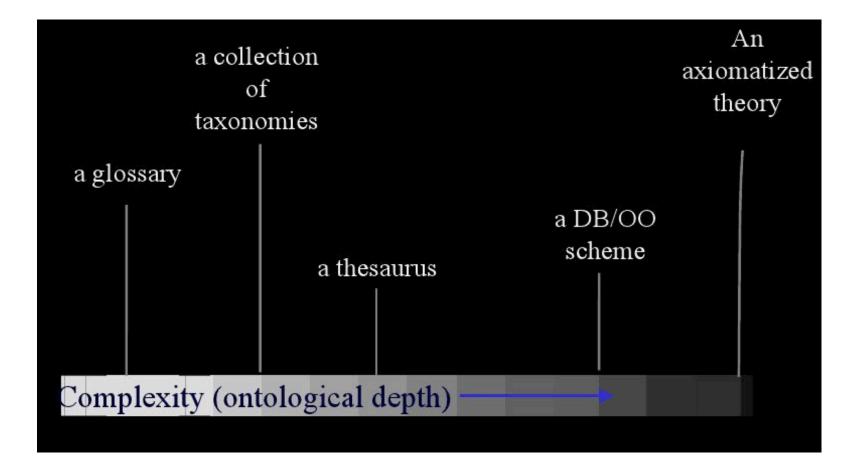
- Many definitions of an ontology in literature;
- Here we refer to an ontology as a "formal specifications of the terms in the domain and relations among them" (*)
- Ontologies contain a formal explicit description of:
 - Concepts (aka classes)
 - Relations (aka roles)
 - Individuals (aka instances)
- Classes (and relations) can be ordered in taxonomies using the subclass relation

(*) [Gruber, T.R. (1993). A Translation Approach to Portable Ontology Specification. Knowledge Acquisition 5: 199-220.]



Taxonomies

Classes (and relations) can be ordered in taxonomies using the subclass relation



- Concepts can be formally described through axioms
- A Pizza Margherita is a pizza which has both tomato topping and mozzarella topping
 - $\begin{aligned} PizzaMargherita &\sqsubseteq Pizza\\ PizzaMargherita &\sqsubseteq \exists hasTopping.TomatoTopping\\ PizzaMargherita &\sqsubseteq \exists hasTopping.MozzarellaTopping \end{aligned}$

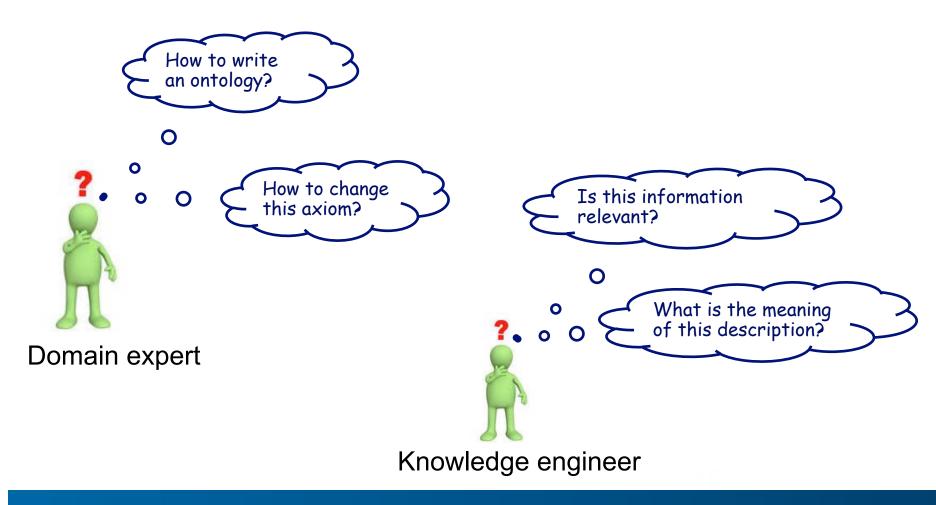
Different types of Ontologies

Slide taken from "Ontology-Driven Conceptual Modelling" A tutorial by Nicola Guarino.

Why to develop an ontology?

- To share common understanding of the structure of information among people or software agents
- To enable reuse of domain knowledge
- To make domain assumptions explicit
- To separate domain knowledge from the operational knowledge
- To analyze domain knowledge

Examples of ontologies


- Large taxonomies categorizing Web sites (such as on Yahoo!)
- Medical Ontologies (such as SNOMED) to annotate documents and share information
- Categorizations of products for sale and their features (such as on Amazon.com, but also smaller enterprises).
- Therefore.....

The development of ontologies is moving from the realm of research labs to the "desktop of domain experts"

Problems in ontology modeling

1. Modelling is a collaborative activity

Problems in ontology modeling

2. Modelling is a time-consuming and error-prone activity, and often needs parsing of a large quantity of material.

Our contribution

Our Contribution to solve those problems

- 1. Framework for the collaborative modeling of ontologies using wikis
- 2. Automatic extraction of key-phrases for ontology modelling

FONDAZIONE BRUNO KESSI ER

COLLABORATIVE FRAMEWORK FOR ONTOLOGY MODELING

Part II

Why a wiki-based conceptual modeling tool?

- Wikis support collaborative editing;
- Users are quite familiar with viewing/editing wiki content (e.g. Wikipedia);
- Only a web-browser is required on the client side;
- Wikis provide a shared knowledge repository accessible by users spread all over the world;
- Wikis can provide a uniform tool/interface for the specification of different model types (e.g. ontologies, processes, ...);

An architecture for collaborative conceptual modeling in wikis

1. One element \leftarrow One page

each element of the model is represented by a page in the wiki;

Concept "Mountain"

Mountain

A **mountain** is a large landform that stretches above the surrounding land in a limited area usually in the form of a peak. A mountain is generally steeper

than a hill.

The highest mountain on earth is the Mount Everest

An architecture for collaborative conceptual modeling in wikis

- 2. Unstructured and structured descriptions
 - each page contains both structured and unstructured content;

Mountain

A **mountain** is a large landform that stretches above the surrounding land in a limited area usually in the form of a peak. A mountain is generally steeper

than a hill.

The highest mountain on earth is the Mount Everest

(unstructured content)

 $\sqsubseteq \mathit{Landform}$

 $\sqsubseteq \neg Hill \sqcap \neg Plain$

 $\sqsubseteq \forall madeOf(Earth \sqcup Rock)$

 $\sqsubseteq \exists height. \geq_{2500}$

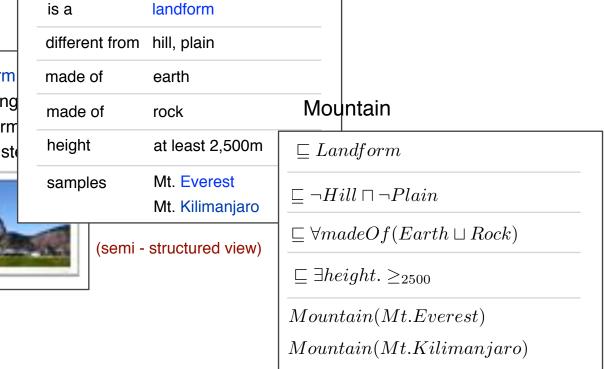
Mountain(Mt.Everest)

Mountain(Mt.Kilimanjaro)

(structured content)

An architecture for collaborative conceptual modeling in wikis

- 3. Different views to access the model:
 - different views to support different modeling actors;


Mountain

Mountain

A mountain is a large landform stretches above the surrounding a limited area usually in the form peak. A mountain is generally ste than a hill.

(unstructured view)

The highest mountain on earth is the Mount Everest

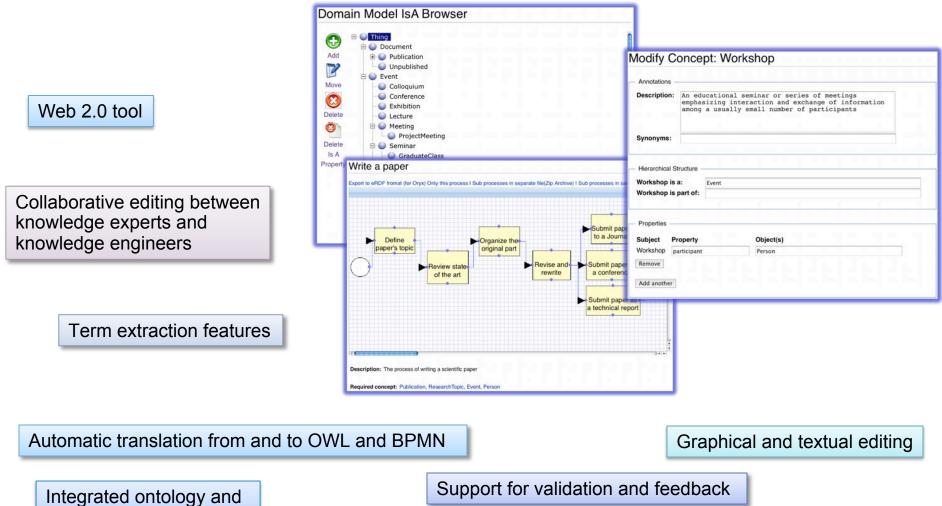
An architecture for collaborative conceptual modeling

Alignment between the different views

Mountain \sqsubseteq Landform landform A mountain is a large landform is a that stretches above the different $\Box \neg Hill \sqcap \neg Plain$ hill, plain surrounding land in a limited from area usually in the form of a $\sqsubseteq \forall madeOf(Earth \sqcup Rock)$ made of earth peak. A mountain is generally $\Box \exists height. \geq_{2500}$ steeper than a hill. made of rock The highest height at least 2,500m mountain on $Mountain(Mt._Everest)$ samples Mt. Everest earth is the Mountain(Mt._Kilimanjaro) Mount Everest Mt. Kilimanjaro

(fully structured view)

(unstructured view)


(semi-structured view)

process modeling

MoKi: The modeling wiki

Available as open source tool. Demo at moki.fbk.eu

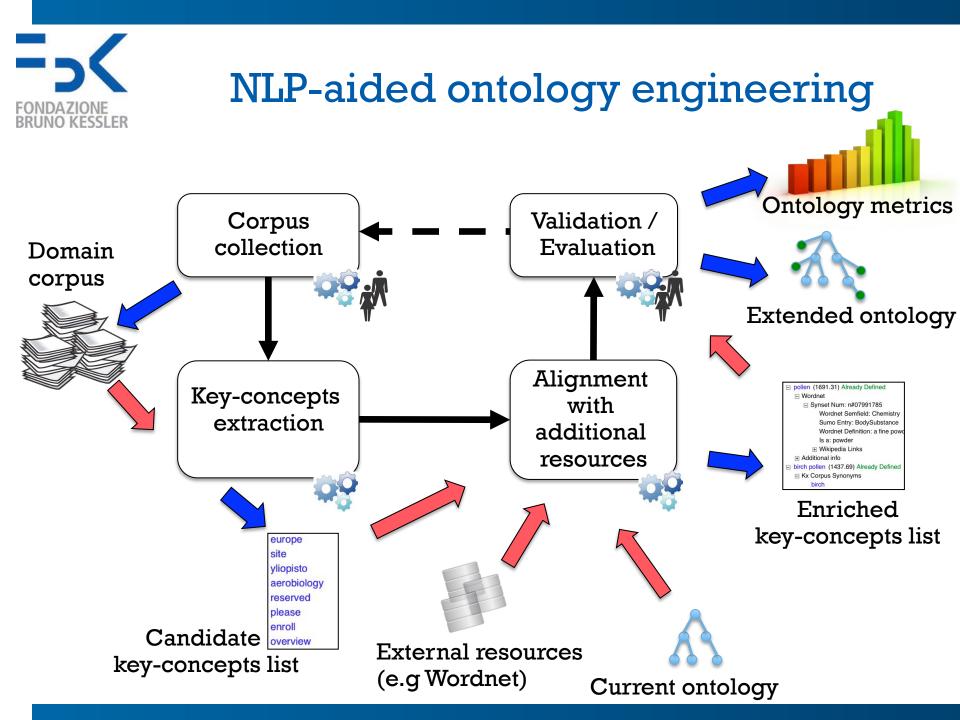
Part III MOKI DEMO

Hints on the applicability of the tool also for other conceptual modelling languages (BPMN)

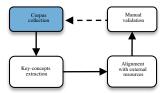
Showcase of results and usages

AUTOMATIC EXTRACTION OF KEY-PHRASES FOR ONTOLOGY MODELLING

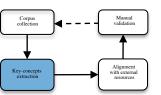
Part IV


NLP-aided ontology engineering

- Support ontology modeling by extracting concepts characterizing a domain from a reference text corpus...
- ... actually, by automatically extracting **key-phrases**
- Key-phrases are the terms characterizing a document or a corpus of documents => candidate relevant concepts of the domain described by the corpus
- Automatic concepts extraction plays an important role in ontology modeling:
 - To boost the ontology construction/extension phase
 - To "**validate**" an ontology against a domain corpus


A framework for supporting ontology building/evaluation by automatic concept extraction from a reference text corpus

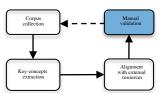
A fully-working and publicly available implementation of the proposed framework in MoKi



- The corpus can be manually or automatically selected (e.g. crawling web pages).
- Corpus could consist of:
 - (large) collection of documents
 - e.g. pollen bulletins crawled on-line
 - A single big document
 - e.g. the BPMN specification.

Key-concept extraction

- Performed by **KX** (**K**eyphrase e**X**traction) tool.
 - exploits linguistic information and statistical measures to select a list of weighted keywords from documents;
 - handles multi-words;
 - flexible parameters configuration;
 - easily adaptable to new languages;
 - ranked 2nd (out of 20) at SemEval2010, task on "Automatic Keyphrase Extraction from Scientific Articles".



Alignment with additional resources

- Extracted key-concepts aligned and enriched with additional resources:
 - WordNet (& WN domains): synonyms, definitions, SUMO labels;
 - Wikipedia: link to the Wikipedia page corresponding to the term (exploiting BabelNet);
 - Other external resources (e.g. dictionary).
- Enriched key-concepts list matched against the ontology, to detect already defined key-concepts.

Ontology Extension / Evaluation

- Ontology **Extension**:
 - The user decides which of the extracted key-concepts to add to the ontology;
 - The additional details provided in the enriched list may guide the formalization;
 - e.g. is-a related synsets, definitions, ...
- Ontology Terminological Evaluation:
 - Automatically computed metrics (variants of IR precision and recall) support users in determining the terminological coverage of the ontology wrt to the corpus used;

Application Scenarios

- The proposed approach can support several different ontology engineering tasks:
 - Ontology construction boosting: building an ontology from scratch;
 - Ontology extension: adding new concepts to an existing ontology;
 - Ontology evaluation: evaluating terminologically an ontology against a domain corpus;
 - Ontology ranking: ranking candidate ontologies wrt a given domain corpus;
 - Ranking of ontology concepts: determining which are the domain-wise most relevant concepts defined in an ontology.

Framework **fully-implemented** in MoKi

- **Publicly available** @ moki.fbk.eu
- Accepts a collection of digital documents in any popular formats

Let's see it in **action**!

Part V MOKI DEMO (CONTINUED)

Part VI PHD CALL ON INFORMATION EXTRACTION FOR ONTOLOGY ENGINEERING

Building Quality Ontologies

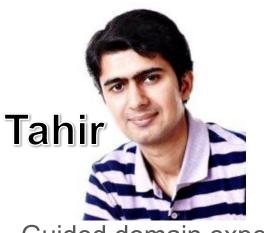
- Starting Point: a collaborative ontology modeling framework supported by NLP techniques
- **Goal**: to support building **rich** and **high quality** ontologies
- Issue: current state of the art NLP techniques for information extraction have some limitations wrt ontology modeling:
 - mainly focused on the extraction of terms;
 - more suitable to support the construction of light-weight medium-quality ontologies;
- Challenge: how to appropriately exploit NLP techniques to support the construction of rich and high quality ontologies?

PhD call on Information Extraction for Ontology Engineering

• Objective:

Investigate how to combine work in **automatic ontology learning** and work in **methodologies and tools** for manual **knowledge engineering** to produce (semi)-automatic services for ontology learning better supporting the construction of **rich and good quality ontologies**.

Address key research challenges in NLP and ontology engineering.


Strong algorithmic and methodological aspects, together with implementation-oriented tasks.

Collaborative modeling of ontologies and processes

Guided domain expert modeling via template

Ontological description of processes

Multi-linguality and eGovernment application

Thank You! Questions?

Chiara Ghidini http://dkm.fbk.eu/ghidini ghidini@fbk.eu

Marco Rospocher http://dkm.fbk.eu/rospocher rospocher@fbk.eu