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Ontology Learning from Text
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Ontology Learning from Text

Bees are insects that produce
honey. They have six legs. Bees
live only in beehives—or just hives.
Maya and Flip are bees. Maya, in
particular, is a notable bee. Maya
and Flip are friends.

Y
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Ontology Learning from Text

MARCO
ROSPOCHER

Bees are insects that produce
honey. They have six legs. Bees
live only in beehives—or just hives.
Maya and Flip are bees. Maya, in
particular, is a notable bee. Maya
and Flip are friends.

Ontology Learning

Y

Terminological Knowledge about con-
cepts, their definitions, and relations
among them. Examples are:

m bees are insects;
m bees produce honey;
m bees have 6 legs;

m bees live in beehives.

Ontology Population

Asserional Knowledge about individuals,
their mutual relations and their relations
with concepts. Examples are:

m Maya is a bee;
m Flip is a bee;

m Maya and Flip are friends;
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Ontology Learning from Text
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Terminological Knowledge about con-

cepts,

their definitions, and relations

among them. Examples are:

m bees are insects;
m bees produce honey;
Ontology Learning m bees have 6 legs;
m bees live in beehives.
Bees are insects that produce
honey. They have six legs. Bees
live only in beehives—or just hives. _
Maya and Flip are bees. Maya, in g
particular, is a notable bee. Maya
and Flip are friends.
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Ontology Learning from Text

Bees are insects that produce honey. They have six legs. Bees live
only in beehives—or just hives. Maya and Flip are bees. Maya, in

particular, is a notable bee. Maya and Flip are friends.

Axiom Bee L Insect 1 dproduce.Honey
Relation  produce(Bee, Honey)

Hierarchy is_a(Bee, Insect)

Concept Beehive

Synonym {beehive, hive}

Term bee, beehive, hive, honey,

Table: Ontology Learning Layer Cake !

1Cimiano et al., 20009.
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State of the Art

Up to 2007:

[...] state-of-the-art in lexical Ontology learning is able to
generate ontologies that are largely informal or lightweight
ontologies in the sense that they are limited in their ex-

pressiveness.
— Volker et al, 2007.

From 2008:
m LEXO (Volker et al, 2008);
m LearningDL (Ma et al., 2014);
m TEDEI (Mathews et al., 2017);
m Gyawali et al., 2017.
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State of the Art

Some common traits:
m heavily hand-crafted rules;
m relying on pre-trained NLP toolkits output to represent text;

m targeting different source and target languages
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State of the Art

Some common traits:
m heavily hand-crafted rules;
m relying on pre-trained NLP toolkits output to represent text;

m targeting different source and target languages

Some common limitations:
m rigidity;

m cost in maintenance and evolution.
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The Road Less Traveled

Transforming a sentence into an axiom:
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The Road Less Traveled

Transforming a sentence into an axiom:

m is it possible to train a machine learning model for this task?
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The Road Less Traveled

Transforming a sentence into an axiom:
m is it possible to train a machine learning model for this task?

m is it possible to perform the training in a end-to-end fashion?
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Framing the Problem

transformation function

\
Natural Language OWL Axiom
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Framing the problem: the source language

Navigli et al., 2010 address the problem of defining a definition as:

m DEFINIENDUM (DF): the concept being defined (e.g., “a
bee”);

m DEFINITOR (VF): that introduces the definition (e.g., “is”);
m DEFINIENS (GF): the genus phrase (e.g., “an insect”);

m REST (DF): the differentia with respect to the genus (e.g.,
“that produces honey”).

A bee is an insect that produces honey.
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Framing the problem: the source language

Navigli et al., 2010 address the problem of defining a definition as:

m DEFINIENDUM (DF): the concept being defined (e.g., “a
bee”);

m DEFINITOR (VF): that introduces the definition (e.g., “is”);
m DEFINIENS (GF): the genus phrase (e.g., “an insect”);

A bee is an insect.
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Framing the problem: the source language

Navigli et al., 2010 address the problem of defining a definition as:

m DEFINIENDUM (DF): the concept being defined (e.g., “a
bee”);

m REST (DF): the differentia with respect to the genus (e.g.,
“that produces honey”).

A bee produces honey.
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Framing the Problem: the source language

Descriptive Language
m A bee is an insect that produces honey.
m A bee is an insect.

m A bee produces honey.
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Framing the problem: the target language

Description Logic languages provide primitives to represent
application domains in terms of their relevant concepts, entities
and relations among them.
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Framing the problem: the target language

Description Logic languages provide primitives to represent
application domains in terms of their relevant concepts, entities
and relations among them. In particular, ALCQ.

primitive syntax | semantics

Universal concept T AL

Bottom concept s (/53

Atomic concept A AT

Concept negation (C) -C AT\ C*

Concept intersection crbD ctnD*

Concept union (U) CubD ctu Dt

Atomic role R R*

Value restriction VR.C ac Al |Vb.(a,b)e Rt - bec Ct
Limited existential quantification JR.T ac AT |3db.(a,b) e R

Full existential quantification (&) JR.C ac At|3b.(a,b) c RT Abec C*
Unqualified numbered restriction (N) | > nR ac Al |{bec Al | (a,b) e Rt} >n
Qualified numbered restriction (Q) >nR.C | ac AT||{bec A%|(a,b) c REAbc CT}| >n
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Framing the Problem: the Transformation Function

_______________________________________________________________________
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Framing the Problem: the Transformation Function

_______________________________________________________________________

A bee is an insect that  produces honey
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Framing the Problem: the Transformation Function

bee L insect [ = produces - honey

_______________________________________________________________________

A bee is an insect that  produces honey
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Framing the Problem: the Transformation Function

“syntactic transformation of natural language definitions into
description logic axioms.” (Voélker J., 2008)

bee L insect [ = produces - honey
[ ] S
[ - _\\_\ _____ J ___________ \l\ _______________________ T - _\\ _____________ L/_ - [ - -
| \ \ ! / I
| \ \ \ ,
I \\ \\ m: || ! :
: \\ TS : II :
| \\ \\\ : I[ |
__________ T —_—-—a.eeee-
TR TS R B R B S A
A bee is an insect that  produces honey

All the extralogical symbols come from the sentence.
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Framing the Problem

syntactic transformation

Descriptive T
Language

ALCQO

We need:
m datasets:

m architecture;
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Structure and Meaning

Machine Learning means examples, good examples, many
examples.
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Structure and Meaning

Machine Learning means examples, good examples, many
examples.

m Every bee is an insect and it also produces honey.
m A bee is an insect that produces honey.

m Bees are insects that produce also honey.
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Structure and Meaning
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m A bee is an insect that produces honey.

m Bees are insects that produce also honey.

m Every bee is an insect that produces also honey.
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Structure and Meaning

Machine Learning means examples, good examples, many
examples.

m Every bee is an insect
O that produces

O also honey.

m Every bee is an insect that produces also honey.
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Structure and Meaning

Machine Learning means examples, good examples, many
examples.

m Every bee is an insect and it also produces honey.
m A bee is an insect that produces honey.

m Bees are insects that produce also honey.

m Every bee is an insect that produces also honey.

Many structures, one meaning.
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Meaning and Structure

Machine Learning means examples, good examples, many
examples.
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Meaning and Structure

Machine Learning means examples, good examples, many
examples.

m Bees are insects that produce honey.
m A bee is also an insect that produces honey.
m Every bee is an insect and it also produces honey.

m A cow is a mammal that eats grass.
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Meaning and Structure

Machine Learning means examples, good examples, many
examples.

m Bees are insects that produce honey.

m A bee is also an insect that produces honey.

m Every bee is an insect and it also produces honey.
O

A cow is a mammal that eats grass.

m A cow is a mammal that produces milk.
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Meaning and Structure

Machine Learning means examples, good examples, many
examples.

N
O that produces
N

m A cow is a mammal

m A cow is a mammal that produces milk.
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Meaning and Structure

Machine Learning means examples, good examples, many
examples.

N
O that produces
N

m A cow is a mammal

m A cow is a mammal that produces milk.

Many meanings, one structure.’

Other semantic phenomena are outside the scope of a syntactic transformation approach.
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First Challenge: the Dataset

Desiderata for the dataset:3
m covers many syntactic constructs (structure);
m covers many domains (meaning);

m has annotated <sentence, axiom> pairs.

3G. Petrucci. “Information Extraction for Learning Expressive Ontologies”,
ESWC 2015 Ph.D. Symp.
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First Challenge: the Dataset

Desiderata for the dataset:3
m covers many syntactic constructs (structure);
m covers many domains (meaning);

m has annotated <sentence, axiom> pairs.

List of suitable datasets:

3G. Petrucci. “Information Extraction for Learning Expressive Ontologies”,
ESWC 2015 Ph.D. Symp.
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First Challenge: the Dataset

Desiderata for the dataset:3
m covers many syntactic constructs (structure);
m covers many domains (meaning);

m has annotated <sentence, axiom> pairs.

List of suitable datasets:
m

Following other notable approaches in literature, we started
building a dataset to train our model.

3G. Petrucci. “Information Extraction for Learning Expressive Ontologies”,
ESWC 2015 Ph.D. Symp.
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First Challenge: the Dataset

bee C insect ] 3 produces : honey
\ \ \ /
] ] T K ]
e """"“"\\‘\ ““““““““““““ St ittt
: \\ \\ \\ // :
\ \ - / I
: \\ \\ m: \| // |
I \ \ . I , I
[ \ N ' / '
I \ \ ! / !
G ___ o ______ DT A A !
\ N T /2 W
AR Ay S ARk R R R A
A bee is an insect that  produces honey
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First Challenge: the Dataset

cow C mammal [ - eats grass
AN \\ \ / I
= = ——l\————— ———————————l—————— _ —_- - - = = = = ———————————\\—————————————//—/—— ——I
! \\ \\ \\ / ;
: \ \ . / |
\ /
| \\ \ mE \I / :
I \ \\ [ | / |
| \ N / |
I \ N I / |
I \ N I /
L — — — - — — U \_\___________________L________/__________!
\ N i /
T | | [N T Tf }
A cow is an mammal  that eats grass
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First Challenge: the Dataset

V. O
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First Challenge: the Dataset

V. O

A NP is a NP that VB NP
CO C C1 11 dRO.C2
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First Challenge: the Dataset

A NP is a NP that VB NP
CO C C1 11 dRO.C2

Templates: structural regularities beyond meaning.
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Data Generation Process

Context-Free Grammar

Y

Everv CO RO at least NUM C1
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Data Generation Process

Context-Free Grammar

Y

Every CO RO at least NUM C1
CO L > NUM RO.C1
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Data Generation Process

VvV Context-Free Grammar

~ Y

S~ . Every CO RO at least NUM C1
CO L > NUM RO.C1

Every PhD student de- PhD student L
fends at least 1 thesis. > 1 defends.thesis
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Data Generation Process

VvV Context-Free Grammar

~ Y

random! ~-_ . Every CO RO at least NUM C1
CO L > NUM RO.C1

Every innocent exile craves innocent exile L

at least 100 towers. > 100 craves.towers
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Data Generation Process

Descriptive Language

m Context-Free Grammar
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Data Generation Process

Descriptive Language

m template;
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Data Generation Process

Descriptive Language

m actualization;

A cow is a mammal

A bee is an insect

A shark is a fish

II\R/I(')QSRPCOOCHER Learning Expressive Ontological Concept Descriptions via Neural Networks — 5 Egll\llﬁézl(l(E)ySELER



Data Generation Process

Descriptive Language

MARCO

ROSPOCHER

m template;

A COisacCil
O

CO RO C1

CO as also Ci1

i i i ipti i - FONDAZIONE
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Data Generation Process

Descriptive Language

m actualization;
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Data Generation Process

Descriptive Language

m template;
m actualization;

m (repeat);
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Data Generation Process

~ Descriptive Language
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Data Generation Process

~ Descriptive Language

. [}
. [ ]
e . > ] ‘
°*” & °. .
° ;0 e . °
° ’ & ® N ® ® °
° o [ ) 4 ® . ° '
. o oy ®. . ¢ 9. %o
m sampling... .‘ o v
o ‘®
. ® ®:.
. °® CY) °
° PO ®
. °
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° o ® .
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Data Generation Process

~ Descriptive Language

. [}
m Context-Free Grammar ..
°
e . > ] ‘
°*” & °. .
° ;0 e . °
° ’ & ® N ® P, °
: * < [ A e o
. - oy . . ¢ o . %o
m sampling... .‘ o v
: . ! ‘@
m and parsing. ° 4 0o s .
. °® CY ) °
° PO °
. °
N X *
° o ® .
® .
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Data Generation Process

Minimal input preprocessing:

m |lower-cased;

. llan 77 % lla 77;
m “doesn't”, “does not”, "don’t” — "do not”;
m lemmatised nouns and verbs;
m numbers — NUM;
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Second Challenge: the Model

A 2-chapter adventure in the world of Recurrent Neural Networks:

2014-2015 Tag& Transduce
G. Petrucci, C. Ghidini, and M. Rospocher

“Ontology Learning in the Deep”
EKAW 2016

2016-2017 Translate
G. Petrucci, M. Rospocher, and C. Ghidini
“Expressive Ontology Learning as Neural Machine
Translation Task”
(Under review)*

*Code & Datasets: https://github.com/dkmfbk/dket
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Tagging and Transducing
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Tagging and Transducing

MARCO
ROSPOCHER

Transduction from sentence to formula template;
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Tagging and Transducing

S T S A U A
| \ N — | J |
b P o P A A
A NP IS an NP that VB NP

Transduction from sentence to formula template;

Tagging extralogical symbols at the right place;
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Tagging and Transducing

A bee is an in-
sect that produces

honey.
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Tagging and Transducing

CO C C1M 4 RO.C2;

transduction (F)

A bee is an in-
sect that produces

honey.
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Tagging and Transducing

CO C C1M 4 RO.C2;

transduction (F)

~ - ?
A bee is an in- N
N
~ Bee [ Insect
sect that produces x
d produces.Honey

honey.
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Tagging and Transducing

CO C C1M 4 RO.C2;

transduction (F)

A bee is an in- N
~. Bee [ Insect

t that d
sec at proaduces Nd produces.Honey

honey.
tagging (T)
A beeco is an insectc; that producesgg honeyco
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Tagging and Transducing

CO C C1M 4 RO.C2;

transduction (F)

A bee is an in- v
7N Bee [ Insect
sect that produces o) >
‘o d produces.Honey
honey. 3
tagging (T)

A beeco is an insectc; that producesgg honeycs
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The Transducing Network

PREDICTION
Yk = argmax(y)

OUTPUT
y; = softmax(Wh; + b)

DECODING
h; = g(c,h;_1)

HIDDEN
h; = g(x;,hj_1)

EMBEDDING
X = Ee,-,

INPUT
V(xi)

MARCO
ROSPOCHER

Co L <E0S>
Y1 y2 Ym

Q Q Q
hy h> h,

e
Y
O
Y
Y
O

hy h> hs \\\:::::::;L\ h,=c

O O O > -O

A A A A

X1+w X2+w X3+w Xn+w

O O O O

A
V(A) V (bee) V(is) e V (<E0S>)
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The Tagging Network

TAG
t = w th = C 3 = w - t, =<E0S>
y; = argmax(y;) 1 \ 2 \ 0 3 A " A
y; = softmax(Wh; + b) T T T T
h; h, h; h
HIDDEN C\ . (\ . (\ . . () n
h; = g(xj,hi_1) g g g y
X1+w X224 w X3+w Xn+tw
EMBEDDING
x; — Ee;, Q Q Q - ¢
INPUT-WINDOWING )
V(Aiw) V(beeiw) V(lsiw) R V(<EOS>iW)

V(Xiiw)
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Tagging and Transducing: Evaluation

RQ1. To what degree is the network capable to generalize
over the syntactic structures of descriptive language?
(many structures, one meaning)

RQ2. To what degree is the network capable to tolerate
words that have not been seen during the training
phase? (many meanings, one structure)

MARCO
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MARCO
ROSPOCHER

Tagging and Transducing: Evaluation

Evaluation Metrics:

ZM {1, if Fk = fk
. =110,
Avg. Per-Formula Acc.

M

otherwise

fully automated

ZM s(rk Fk)
Avg. Edit Distance ED(F,F) = k:1M

semi-automated

TA(F, F) =

k . A
S S b
A k=1 otherW|se

Avg. Per-Token Acc.

quick control
Zk:l Tfk

Learning Expressive Ontological Concept Descriptions via Neural Networks
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Tagging and Transducing: Evaluation

m different training set sizes;
m 2M test examples;
m <UNK> between 20% and 40%.
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Tagging and Transducing: Evaluation

m different training set sizes;
m 2M test examples;
m <UNK> between 20% and 40%.

training set size | CF FA ED TA
1000 10 0.be-5 267 0.90
2000 | 161 8.05e-5 1.34 0.95
3000 60 3.00e-5 1.22 0.96
4000 22 1.10e-5 1.07 0.97
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Tagging and Transducing: Evaluation

m different training set sizes;
m 2M test examples;
m <UNK> between 20% and 40%.

training set size | CF FA ED TA
1000 10 0.be-5 267 0.90
2000 | 161 8.05e-5 1.34 0.95
3000 60 3.00e-5 1.22 0.96
4000 22 1.10e-5 1.07 0.97

Many limitations: we dropped the project and move forward.
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Moving forward (aka 1 > 2)

The placeholders are numbered in the training set and there is no
way to overcome this limit—namely, generalize over the length of
the sentence—by design.
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Moving forward (aka 1 > 2)

Negramaro is a red and strong wine.
negramaro L red winellstrong wine

Negramaro is a red

and strong wine.
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Moving forward (aka 1 > 2)

Negramaro is a red and strong wine.
negramaro L red winellstrong wine

CoOL Ci1ucC2

transduction (F)

Negramaro is a red K - \\\
] X
and strong wine. N
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Moving forward (aka 1 > 2)

Negramaro is a red and strong wine.
negramaro L red winellstrong wine

CoOL Ci1ucC2

transduction (F)

Negramaro is a red I/’ ~
X |
and strong wine. N
A
tagging (T)

Negramaroco is a redc; and strongcz winecs.
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Moving forward (aka 1 > 2)

Negramaro is a red and strong wine.
negramaro L red winellstrong wine

CoOL Ci1ucC2

transduction (F)

Negramaro is a red K ’><\ N negramaro
and strong wine. oL red Ll strong_wine
A
tagging (T)

Negramaroco is a redc; and strongcz winecs.
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Translate
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Translate

| | | | | | | T [

A bee is an insect that  produces honey
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Translate

\ |

\

|

|

|
1 T 1 1 1 T 1 ]
A bee is an insect that  produces honey -
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Translate

O—l
®
®
I

copy(#2). emit(E)
A N A

MARCO Learning Expressive Ontological Concept Descriptions via Neural Networks
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Translate

copy(#2).
A \

|
| \
| \

I

emit(C)
A

insect

MARCO
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IS
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Translate

insect [

O—l
®
®
I

A
| \ | | |
| \ | | \ |
[ [ [ [

copy(#Q\)\ emit(C) copy(#\S) emit()

\

1 T T T T T T ]

A bee is an insect that  produces honey
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Translate

bee L insect N 3
A X A A A
\ \
\ \
\ \
\ \
\ \
\ \
copy(#2). emit(Z) copy(#5) emit(n)  emit(3)
A N A A \ A A
| | | \ | |
| ! | | \ | |
! ' ! ! \ ! !
\
\ \
\ \
\ \
\ \ H:
\ : -
\
| \
| \
| \
| \
1 T T T T T T ]
A bee is an insect that  produces honey -
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Translate

copy(#2).
A \

|
I \
| \

I

emit(C)
A

insect [ - produces

A A A »\
copy(#\S) emit(l)  emit(3) copy(#?\)
A \ A A A \

I I I
I \ I I
I I I

MARCO
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IS an insect
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Translate

bee L
A \
copy(#2). emit(C)
A ' A

| \ |
| \ |
| ! |

insect [ - produces

A A A »\
copy(#\S) emit(l)  emit(3) copy(#?\)
A \ A A A \

I I I
I \ I I
I I I

! |
I
I

emit(.)
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that  produces

honey
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Translate

O—l
®
®
I

insect N 3 produces - honey

(i t \ /
\ \ \ /
\ \ /
\
\ \ .
\ \

\ /

copy(#Q\)\\ emit(C) copy(#\S) emit(l)  emit(3) copy(#%\) emit(.) , copy(#8)

| T | I | I I [

A bee is an insect that  produces honey

Quasi-zero vocabulary setting.
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Translate

MARCO
ROSPOCHER

A

Emit logical symbol Copy input word

\‘I—
Y

attention /

A /
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Translate

X1 X2 X; XT,
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Translate

h; h hi—1 h; hr, 1
ge(x1,hg) — ge(x2,hy) — > - — > ge(xj,hiz1)) — - — > ge(x7,, h71)
X1 X2 X; XT,
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Translate

h; h hi—1 h; hr, 1
ge(x1,hg) — ge(x2,hy) — > - — > ge(xj,hiz1)) — - — > ge(x7,, h71)
X1 X2 X; XT,
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Translate

h; h hi—1 h; hr, 1
ge(x1,hg) — ge(x2,hy) — > - — > ge(xj,hiz1)) — - — > ge(x7,, h71)
X1 X2 X; XT,
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Translate

h; h hi—1 h; hr, 1
ge(x1,hg) — ge(x2,hy) — > - — > ge(xj,hiz1)) — - — > ge(x7,, h71)
X1 X2 X; XT,
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Translate

Shortlist Softmax

h; h hi—1 h; hr, 1
ge(x1,hg) — ge(x2,hy)) — > -+ — > ge(xj,hjm1) — > - — > ge(x7.,h71)
X1 X2 X; XT,
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Translate

Shortlist Softmax

h; h hi—1 h; hr, 1
ge(x1,hg) — ge(x2,hy)) — > -+ — > ge(xj,hjm1) — > - — > ge(x7.,h71)
X1 X2 X; XT,
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Translate

Shortlist Softmax

h; h hi—1 h; hr, 1
ge(x1,hg) — ge(x2,hy)) — > -+ — > ge(xj,hjm1) — > - — > ge(x7.,h71)
X1 X2 X; XT,
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Translate

RQ1. To what degree is the network capable to generalize
over the syntactic structures of descriptive language?
(many structures, one meaning)

RQ2. To what degree is the network capable to tolerate
words that have not been seen during the training
phase? (many meanings, one structure)

MARCO
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Translate: Closed-Vocabulary Evaluation

training set size FA ED TA
2000 | 0.61 2.48 0.92

5000 | 0.84 0.60 0.98

10000 | 0.89 0.47 0.99

20000 | 0.81 0.46 0.98
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Translate: Open-Vocabulary Evaluation

training set size FA ED TA
2000 | 0.62 1.51 0.94

5000 | 0.86 0.63 0.98

10000 | 0.85 0.51 0.98

20000 | 0.89 0.38 0.99
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Into the wild

So far, so good.
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Into the wild

So far, so good. So what?

RQ3. To what extent is the model capable to improve its
performances with the addition of few annotated
examples?
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The Reference Set

500 manually curated examples from well known ontologies or
formalized ad hoc by knowledge engineers.
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The Reference Set

500 manually curated examples from well known ontologies or
formalized ad hoc by knowledge engineers.

size | len. | LEN. | avg. len. exist. univ. | card. restr.
training 75 5 28 11.72 | 42.67% | 2.67% 9.33%
test 425 5 40 12.36 | 50.82% | 4.47% 9.18%

MARCO
ROSPOCHER
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Evaluation Against the Reference Set

ROSPOCHER

system CF

Grammar Parser 17 0.04 - -
Tag& Transduce 0 0.00 11.7 0.10
Translate (20k-open) | 38 0.09 4.55 0.49
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Evaluation Against the Reference Set
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Evaluation Against the Reference Set

ROSPOCHER

training set size | CF FA ED TA
2k 35 0.08 4.80 0.47

2k+75 | 143 0.34 3.44 0.60

5k 38 0.09 458 0.48

5k+75 | 126 0.30 3.55 0.59

10k 39 0.09 459 048

10k-+75 82 0.19 4.06 0.55

20k 38 0.09 455 0.49

20k+-75 55 0.13 453 0.50

Learning Expressive Ontological Concept Descriptions via Neural Networks
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Through the Looking Glass

Contributions:
m suitable architecture;
m bootstrap datasets and reference set;

m a new approach.
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| essons Learned

| esson Learned.

m the pointing network is a powerful architecture and can deal
successfully with our quasi-zero vocabulary setting;

m the bootstrap data can be a good start, but the model can be
biased in the perspective of an adaptation to real world data;

m the model could learn from raw text (with a minimum

preprocessing), though, on the long term it would require a
large amount of text.
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The Road Ahead

Future work:
m more on the architecture: Bi-GRU, LSTMs, ...:

m more on the data: definition extraction, distant supervision,
generative autoencoding, ...;

m less on the radical end-to-end and zero feature engineering.
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