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Ontology Learning from Text

Bees are insects that produce
honey. They have six legs. Bees
live only in beehives—or just hives.
Maya and Flip are bees. Maya, in
particular, is a notable bee. Maya
and Flip are friends.

Terminological Knowledge about con-

cepts, their definitions, and relations

among them. Examples are:

bees are insects;

bees produce honey;

bees have 6 legs;

bees live in beehives.

Ontology Learning

Asserional Knowledge about individuals,

their mutual relations and their relations

with concepts. Examples are:

Maya is a bee;

Flip is a bee;

Maya and Flip are friends;

Ontology Population
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Ontology Learning from Text

Bees are insects that produce honey. They have six legs. Bees live

only in beehives—or just hives. Maya and Flip are bees. Maya, in

particular, is a notable bee. Maya and Flip are friends.

Axiom Bee ı Insect Ù ÷produce.Honey
Relation produce(Bee, Honey)
Hierarchy is a(Bee, Insect)
Concept Beehive
Synonym {beehive, hive}
Term bee, beehive, hive, honey, ...

Table: Ontology Learning Layer Cake
1

1Cimiano et al., 2009.
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State of the Art

Up to 2007:

[...] state-of-the-art in lexical Ontology learning is able to

generate ontologies that are largely informal or lightweight

ontologies in the sense that they are limited in their ex-

pressiveness.

— Völker et al, 2007.

From 2008:

LExO (Völker et al, 2008);

LearningDL (Ma et al., 2014);

TEDEI (Mathews et al., 2017);

Gyawali et al., 2017.
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State of the Art

Some common traits:

heavily hand-crafted rules;

relying on pre-trained NLP toolkits output to represent text;

targeting di�erent source and target languages

Some common limitations:

rigidity;

cost in maintenance and evolution.
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Transforming a sentence into an axiom:

is it possible to train a machine learning model for this task?

is it possible to perform the training in a end-to-end fashion?
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Framing the Problem

Natural Language OWL Axiom

transformation function
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Framing the problem: the source language

Navigli et al., 2010 address the problem of defining a definition as:

DEFINIENDUM (DF): the concept being defined (e.g., “a

bee”);

DEFINITOR (VF): that introduces the definition (e.g., “is”);

DEFINIENS (GF): the genus phrase (e.g., “an insect”);

REST (DF): the di�erentia with respect to the genus (e.g.,

“that produces honey”).

A bee is an insect that produces honey.
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Framing the Problem: the source language

Descriptive Language

A bee is an insect that produces honey.

A bee is an insect.

A bee produces honey.
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Framing the problem: the target language

Description Logic languages provide primitives to represent

application domains in terms of their relevant concepts, entities

and relations among them.

In particular, ALCQ.

primitive syntax semantics

Universal concept € �
I

Bottom concept ‹ ÿI

Atomic concept A A
I

Concept negation (C) ¬C �
I \ C

I

Concept intersection C Ù D C
I fl D

I

Concept union (U) C Û D C
I fi D

I

Atomic role R R
I

Value restriction ’R.C a œ �
I | ’ b . (a, b) œ R

I æ b œ C
I

Limited existential quantification ÷R.€ a œ �
I | ÷ b . (a, b) œ R

I

Full existential quantification (E) ÷R.C a œ �
I |÷b.(a, b) œ R

I · b œ C
I

Unqualified numbered restriction (N ) > nR a œ �
I | |{b œ �

I | (a, b) œ R
I}| Ø n

Qualified numbered restriction (Q) > nR.C a œ �
I ||{b œ �

I |(a, b) œ R
I · b œ C

I}| Ø n
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Framing the Problem: the Transformation Function

“syntactic transformation of natural language definitions into

description logic axioms.” (Völker J., 2008)

bee ı insect Ù ÷ produces . honey

A bee is an insect that produces honey .

All the extralogical symbols come from the sentence.
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Framing the Problem

Descriptive

Language
ALCQ

syntactic transformation

We need:

datasets;

architecture;
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Structure and Meaning

Machine Learning means examples, good examples, many

examples.

Every bee is an insect and it also produces honey.

A bee is an insect that produces

honey.

Bees are insects that produce also honey.

Every bee is an insect that produces also honey.

Many structures, one meaning.



Learning Expressive Ontological Concept Descriptions via Neural NetworksMARCO 
ROSPOCHER

Structure and Meaning

Machine Learning means examples, good examples, many

examples.

Every bee is an insect and it also produces honey.

A bee is an insect that produces honey.

Bees are insects that produce also honey.

Every bee is an insect that produces also honey.

Many structures, one meaning.



Learning Expressive Ontological Concept Descriptions via Neural NetworksMARCO 
ROSPOCHER

Structure and Meaning

Machine Learning means examples, good examples, many

examples.

Every bee is an insect and it also produces honey.

A bee is an insect that produces honey.

Bees are insects that produce also honey.

Every bee is an insect that produces also honey.

Many structures, one meaning.



Learning Expressive Ontological Concept Descriptions via Neural NetworksMARCO 
ROSPOCHER

Structure and Meaning

Machine Learning means examples, good examples, many

examples.

Every bee is an insect and it also produces honey.

A bee is an insect that produces

honey.

Bees are insects that produce also honey.

Every bee is an insect that produces also honey.

Many structures, one meaning.



Learning Expressive Ontological Concept Descriptions via Neural NetworksMARCO 
ROSPOCHER

Structure and Meaning

Machine Learning means examples, good examples, many

examples.

Every bee is an insect and it also produces honey.

A bee is an insect that produces honey.

Bees are insects that produce also honey.

Every bee is an insect that produces also honey.

Many structures, one meaning.



Learning Expressive Ontological Concept Descriptions via Neural NetworksMARCO 
ROSPOCHER

Meaning and Structure

Machine Learning means examples, good examples, many

examples.

Bees are insects that produce honey.

A bee is also an insect that produces honey.

Every bee is an insect and it also produces honey.

A cow is a mammal that eats grass.

A cow is a mammal that produces milk.

Many meanings, one structure.
2

2
Other semantic phenomena are outside the scope of a syntactic transformation approach.



Learning Expressive Ontological Concept Descriptions via Neural NetworksMARCO 
ROSPOCHER

Meaning and Structure

Machine Learning means examples, good examples, many

examples.

Bees are insects that produce honey.

A bee is also an insect that produces honey.

Every bee is an insect and it also produces honey.

A cow is a mammal that eats grass.

A cow is a mammal that produces milk.

Many meanings, one structure.
2

2
Other semantic phenomena are outside the scope of a syntactic transformation approach.



Learning Expressive Ontological Concept Descriptions via Neural NetworksMARCO 
ROSPOCHER

Meaning and Structure

Machine Learning means examples, good examples, many

examples.

Bees are insects that produce honey.

A bee is also an insect that produces honey.

Every bee is an insect and it also produces honey.

A cow is a mammal that eats grass.

A cow is a mammal that produces milk.

Many meanings, one structure.
2

2
Other semantic phenomena are outside the scope of a syntactic transformation approach.

Meaning and Structure

Machine Learning means examples, good examples, many

examples.

Bees are insects that produce honey.

A bee is also an insect that produces honey.

Every bee is an insect and it also produces honey.

A cow is a mammal that eats grass.

A cow is a mammal that produces milk.

Many meanings, one structure.
2

2
Other semantic phenomena are outside the scope of a syntactic transformation approach.



Learning Expressive Ontological Concept Descriptions via Neural NetworksMARCO 
ROSPOCHER

Meaning and Structure

Machine Learning means examples, good examples, many

examples.

Bees are insects that produce honey.

A bee is also an insect that produces honey.

Every bee is an insect and it also produces honey.

A cow is a mammal that eats grass.

A cow is a mammal that produces milk.

Many meanings, one structure.
2

2
Other semantic phenomena are outside the scope of a syntactic transformation approach.



Learning Expressive Ontological Concept Descriptions via Neural NetworksMARCO 
ROSPOCHER

Meaning and Structure

Machine Learning means examples, good examples, many

examples.

Bees are insects that produce honey.

A bee is also an insect that produces honey.

Every bee is an insect and it also produces honey.

A cow is a mammal that eats grass.

A cow is a mammal that produces milk.

Many meanings, one structure.
2

2
Other semantic phenomena are outside the scope of a syntactic transformation approach.



Learning Expressive Ontological Concept Descriptions via Neural NetworksMARCO 
ROSPOCHER

First Challenge: the Dataset

Desiderata for the dataset:
3

covers many syntactic constructs (structure);

covers many domains (meaning);

has annotated <sentence, axiom> pairs.

List of suitable datasets:

?

Following other notable approaches in literature, we started

building a dataset to train our model.

3G. Petrucci. “Information Extraction for Learning Expressive Ontologies”,
ESWC 2015 Ph.D. Symp.
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First Challenge: the Dataset

bee ı insect Ù ÷ produces . honey

A bee is an insect that produces honey .

A NP is a NP that VB NP
C0 ı C1 Ù ÷R0.C2

Templates: structural regularities beyond meaning.
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A cow is an mammal that eats grass .

A NP is a NP that VB NP
C0 ı C1 Ù ÷R0.C2

Templates: structural regularities beyond meaning.
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Data Generation Process

Context-Free Grammar

Every C0 R0 at least NUM C1

C0 ı> NUM R0.C1

Every PhD student de-
fends at least 1 thesis.

PhD student ı
> 1 defends.thesis

V
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Data Generation Process

Context-Free Grammar

Every C0 R0 at least NUM C1

C0 ı> NUM R0.C1

Every innocent exile craves
at least 100 towers.

innocent exile ı
> 100 craves.towers

V

random!
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Data Generation Process

Context-Free Grammar

template;

actualization;

(repeat);

approximation;

sampling...

and parsing.

Descriptive Language
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Data Generation Process

Context-Free Grammar

template;

actualization;

(repeat);

approximation;

sampling...

and parsing.

Descriptive Language

A bee is an insect

A cow is a mammal

A shark is a fish
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Data Generation Process

Context-Free Grammar

template;

actualization;

(repeat);

approximation;

sampling...

and parsing.

Descriptive Language

A C0 is a C1

C0 R0 C1

C0 as also C1
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approximation;

sampling...
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Descriptive Language
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Data Generation Process

Minimal input preprocessing:

lower-cased;

“an” æ “a”;

“doesn’t”, “does not”, “don’t” æ “do not”;

lemmatised nouns and verbs;

numbers æ NUM;
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Second Challenge: the Model

A 2-chapter adventure in the world of Recurrent Neural Networks:

2014-2015 Tag&Transduce

G. Petrucci, C. Ghidini, and M. Rospocher

“Ontology Learning in the Deep”

EKAW 2016

2016-2017 Translate

G. Petrucci, M. Rospocher, and C. Ghidini

“Expressive Ontology Learning as Neural Machine

Translation Task”

(Under review)
4

4Code & Datasets: https://github.com/dkmfbk/dket
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Tagging and Transducing

C0 ı C1 Ù ÷ R0 . C2

A NP is an NP that VB NP .

Transduction from sentence to formula template;

Tagging extralogical symbols at the right place;
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Tagging and Transducing

A bee is an in-

sect that produces

honey.

C0 ı C1 Ù ÷ R0.C2;

transduction (F)

Bee ı Insect

Ù÷ produces.Honey

?

A beeC0 is an insectC1 that producesR0 honeyC2

tagging (T)

◊
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The Transducing Network

Input
V (xi)

V (A) V (bee) V (is) . . . V (<EOS>)

Embedding
xi = Eei ,

x1±w x2±w x3±w
. . .

xn±w

Hidden
hi = g(xi , hi≠1)

h1 h2 h3

. . .

hn = c

Decoding
hj = g(c, hj≠1)

h1 h2

. . .

hm

Output
yj = softmax(Whj + b)

y1 y2

. . .

ym

Prediction
yk = argmax(yk)

C0 ı ... <EOS>
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The Tagging Network

Input-Windowing
V (xi±w )

V (A±w ) V (bee±w ) V (is±w ) . . . V (<EOS>±w )

Embedding
xi = Eei ,

x1±w x2±w x3±w
. . .

xn±w

Hidden
hi = g(xi , hi≠1)

h1 h2 h3

. . .

hn

Output
yi = softmax(Whi + b)

y1 y2 y3

. . .

yn

Tag
yi = argmax(yi)

t1 = w t2 = C0 t3 = w . . . tn =<EOS>
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Tagging and Transducing: Evaluation

RQ1. To what degree is the network capable to generalize

over the syntactic structures of descriptive language?

(many structures, one meaning)

RQ2. To what degree is the network capable to tolerate

words that have not been seen during the training

phase? (many meanings, one structure)
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Tagging and Transducing: Evaluation

Evaluation Metrics:

Avg. Per-Formula Acc. FA(F̂, F) =
CF
M =

qM
k=1

Ó
1, if f k © f̂ k

0, otherwise

M fully automated

Avg. Edit Distance ED(F̂, F) =

qM
k=1

”(f k ,f̂ k
)

M semi-automated

Avg. Per-Token Acc. TA(F̂, F) =

qM
k=1

qTf k
j=1

Ó
1, if f k

j = f̂ k
j

0, otherwiseqM
k=1

Tf k
quick control
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Tagging and Transducing: Evaluation

di�erent training set sizes;

2M test examples;

<UNK> between 20% and 40%.

training set size CF FA ED TA

1000

10 0.5e-5

2.67 0.90

2000

161 8.05e-5

1.34 0.95

3000

60 3.00e-5

1.22 0.96

4000

22 1.10e-5

1.07 0.97

Many limitations: we dropped the project and move forward.
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Moving forward (aka 1 > 2)

The placeholders are numbered in the training set and there is no

way to overcome this limit—namely, generalize over the length of

the sentence—by design.
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Moving forward (aka 1 > 2)

Negramaro is a red and strong wine.

negramaro ı red wine Ù strong wine

Negramaro is a red
and strong wine.

◊

C0 ı C1 Û C2

transduction (F)

NegramaroC0 is a redC1 and strongC2 wineC2.

tagging (T)

negramaro ı
red Û strong wine
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Moving forward (aka 1 > 2)
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Translate

bee ı insect Ù ÷ produces . honey

copy(#2) emit(ı) copy(#5) emit(Ù) emit(÷) copy(#7) emit(.) copy(#8)

A bee is an insect that produces honey .

Quasi-zero vocabulary setting.
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Translate

bee

ı insect Ù ÷ produces . honey

copy(#2)

emit(ı) copy(#5) emit(Ù) emit(÷) copy(#7) emit(.) copy(#8)

A bee is an insect that produces honey .

Quasi-zero vocabulary setting.
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Translate

bee ı

insect Ù ÷ produces . honey

copy(#2) emit(ı)

copy(#5) emit(Ù) emit(÷) copy(#7) emit(.) copy(#8)

A bee is an insect that produces honey .

Quasi-zero vocabulary setting.
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Translate

bee ı insect

Ù ÷ produces . honey

copy(#2) emit(ı) copy(#5)

emit(Ù) emit(÷) copy(#7) emit(.) copy(#8)

A bee is an insect that produces honey .

Quasi-zero vocabulary setting.
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Translate

bee ı insect Ù ÷

produces . honey
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copy(#7) emit(.) copy(#8)

A bee is an insect that produces honey .
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Translate

bee ı insect Ù ÷ produces

. honey

copy(#2) emit(ı) copy(#5) emit(Ù) emit(÷) copy(#7)

emit(.) copy(#8)

A bee is an insect that produces honey .

Quasi-zero vocabulary setting.
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Translate

bee ı insect Ù ÷ produces .

honey

copy(#2) emit(ı) copy(#5) emit(Ù) emit(÷) copy(#7) emit(.)

copy(#8)

A bee is an insect that produces honey .

Quasi-zero vocabulary setting.
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Translate

bee ı insect Ù ÷ produces . honey

copy(#2) emit(ı) copy(#5) emit(Ù) emit(÷) copy(#7) emit(.) copy(#8)

A bee is an insect that produces honey .

Quasi-zero vocabulary setting.
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Translate

x1, x2, ..., xn

attention

ztEmit logical symbol Copy input word
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Translate

yj = zj · uj ü (1 ≠ zj) · wj
ỹj

Switch

zj

Shortlist Softmax

uj

gd(..., dj≠1)

djdj

Attention

cj

cj

wj

dj≠1

dj≠1

ỹj≠1

ge(xi , hi≠1) ... ge(xTx , hTx )...ge(x2, h1)ge(x1, h0)

h1 h2 hi≠1 hi hTx ≠1

h1

h2

hi
hTx

x1 x2 ... xi ... xTx
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Translate
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Translate

RQ1. To what degree is the network capable to generalize

over the syntactic structures of descriptive language?

(many structures, one meaning)

RQ2. To what degree is the network capable to tolerate

words that have not been seen during the training

phase? (many meanings, one structure)
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Translate: Closed-Vocabulary Evaluation

training set size FA ED TA

2000 0.61 2.48 0.92

5000 0.84 0.60 0.98

10000 0.89 0.47 0.99

20000 0.81 0.46 0.98
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Translate: Open-Vocabulary Evaluation

training set size FA ED TA

2000 0.62 1.51 0.94

5000 0.86 0.63 0.98

10000 0.85 0.51 0.98

20000 0.89 0.38 0.99
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Into the wild

So far, so good.

So what?

RQ3. To what extent is the model capable to improve its

performances with the addition of few annotated

examples?
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The Reference Set

500 manually curated examples from well known ontologies or

formalized ad hoc by knowledge engineers.

size len. LEN. avg. len. exist. univ. card. restr.

training 75 5 28 11.72 42.67% 2.67% 9.33%
test 425 5 40 12.36 50.82% 4.47% 9.18%
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Evaluation Against the Reference Set

system CF FA ED TA

Grammar Parser 17 0.04 - -

Tag&Transduce 0 0.00 11.7 0.10

Translate (20k-open) 38 0.09 4.55 0.49
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Evaluation Against the Reference Set

training set size CF FA ED TA

2k 35 0.08 4.80 0.47
2k+75 143 0.34 3.44 0.60

5k 38 0.09 4.58 0.48
5k+75 126 0.30 3.55 0.59

10k 39 0.09 4.59 0.48
10k+75 82 0.19 4.06 0.55

20k 38 0.09 4.55 0.49
20k+75 55 0.13 4.53 0.50
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Through the Looking Glass

Contributions:

suitable architecture;

bootstrap datasets and reference set;

a new approach.
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Lessons Learned

Lesson Learned.

the pointing network is a powerful architecture and can deal

successfully with our quasi-zero vocabulary setting;

the bootstrap data can be a good start, but the model can be

biased in the perspective of an adaptation to real world data;

the model could learn from raw text (with a minimum

preprocessing), though, on the long term it would require a

large amount of text.
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The Road Ahead

Future work:

more on the architecture: Bi-GRU, LSTMs, ...;

more on the data: definition extraction, distant supervision,

generative autoencoding, ...;

less on the radical end-to-end and zero feature engineering.
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http://bit.ly/giuliophd

http://bit.ly/giuliophd
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